4 research outputs found

    Front-end electronics of the Compact High Energy Camera

    No full text
    The Compact High Energy Camera is a focal plane camera designed for two mirror Schwarzschild–Couder design imaging air Cherenkov telescopes such as the SST-2M variants on the Cherenkov Telescope Array. It utilises a 2048-pixel array of silicon photomultipliers arranged in thirty-two 8 x 8 pixel tiles. Each detector tile is instrumented with a front-end electronics module designed to provide single photon counting with sub-nanosecond timing, full-waveform digitisation and event triggering capabilities based around TARGET ASICs. Performance results including triggering, digitiser noise, signal crosstalk, linearity and dynamic range from initial laboratory tests have been collated and are presented

    Investigating machine learning solutions for a 256 channel TCSPC camera with sub-70 ps single photon timing per channel at data rates >10 Gbps

    No full text
    The development of a Time Correlated Single Photon Counting (TCSPC) camera with 256 channels has enabled several applications where single photon sensitivity is crucial, such as LiDAR, Fluorescent Lifetime IMaging (FLIM) and quantum information systems. The microchannel plate-based Multi-Anode Photo-Multiplier Tube (MAPMT) is a 16 Ă— 16 array of 1.656 mm pitch pixels with an active anode area of 26.5 Ă— 26.5 mm2. Each pixel can time single photons with an accuracy of 60 ps rms at a maximum photon rate of 480 KHz. The timing electronics are capable of measuring 120 Mcps, producing huge volumes of data for processing, in the region of 10 Gbps per detector. Limitations in algorithmic data analysis techniques are critical for this application, hence this paper demonstrates a machine learning (ML) model which can determine the photon event coordinates with the objective of processing each one photon per 10 ÎĽs. The model applies calibrations for the detector and electronics such as amplitude walk, and charge measurement and channel to channel threshold variation. Optimisation of the model is detailed within the paper, including training hyperparameters, the clustering of coincident events and compression of the model through pruning techniques. The ML model is trained and tested on a simulation of the microchannel plate (MCP) PMT with timing electronics configured for use as a TCSPC camera, utilising charge sharing techniques to further improve the spatial resolution of the detector. Further objectives of the research are to test the model on detector data, allowing assessment on the variance of accuracy between simulated and real data. Beyond this, assessment of the performance of this approach compared to algorithmic approaches and introduction of statistical reasoning of the robustness of the model will be completed

    Testbeam studies of a TORCH prototype detector

    Get PDF
    TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660Ă—1250Ă—10mm3), which is currently under construction

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    No full text
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies
    corecore