2,429 research outputs found

    Heterogeneity and Disorder: Contributions of Rolf Landauer

    Full text link
    Rolf Landauer made important contributions to many branches of science. Within the broad area of transport in disordered media, he wrote seminal papers on electrical conduction in macroscopically inhomogeneous materials, as well as fundamental analyses of electron transport in quantum mechanical systems with disorder on the atomic scale. We review here some of these contributions. We also briefly describe some main events in his personal and scientific life.Comment: 10 pages, 3 figures; presented on the occasion when Rolf Landauer was awarded, posthumously, the inaugural ETOPIM Medal at the ETOPIM 8 Conference, which took place during 7--12 June, 2009 in Rethymnon, Cret

    Transport in Molecular Junctions with Different Metallic Contacts

    Full text link
    Ab initio calculations of phenyl dithiol connected to Au, Ag, Pd, and Pt electrodes are performed using non-equilibrium Green's functions and density functional theory. For each metal, the properties of the molecular junction are considered both in equilibrium and under bias. In particular, we consider in detail charge transfer, changes in the electrostatic potential, and their subsequent effects on the IV curves through the junctions. Gold is typically used in molecular junctions because it forms strong chemical bonds with sulfur. We find however that Pt and Pd make better electrical contacts than Au. The zero-bias conductance is found to be greatest for Pt, followed by Pd, Au, and then Ag

    Spectrum of π\pi Electrons in Graphene as an Alternant Macromolecule and Its Specific Features in Quantum Conductance

    Full text link
    An exact description of π\pi electrons based on the tight-binding model of graphene as an alternant, plane macromolecule is presented. The model molecule can contain an arbitrary number of benzene rings and has armchair- and zigzag-shaped edges. This suggests an instructive alternative to the most commonly used approach, where the reference is made to the honeycomb lattice periodic in its A and B sublattices. Several advantages of the macromolecule model are demonstrated. The newly derived analytical relations detail our understanding of π\pi electron nature in achiral graphene ribbons and carbon tubes and classify these structures as quantum wires.Comment: 13 pages 8 figures, revised in line with referee's comment

    Distributions of Conductance and Shot Noise and Associated Phase Transitions

    Full text link
    For a chaotic cavity with two indentical leads each supporting N channels, we compute analytically, for large N, the full distribution of the conductance and the shot noise power and show that in both cases there is a central Gaussian region flanked on both sides by non-Gaussian tails. The distribution is weakly singular at the junction of Gaussian and non-Gaussian regimes, a direct consequence of two phase transitions in an associated Coulomb gas problem.Comment: 5 pages, 3 figures include

    New mechanism for impurity-induced step bunching

    Full text link
    Codeposition of impurities during the growth of a vicinal surface leads to an impurity concentration gradient on the terraces, which induces corresponding gradients in the mobility and the chemical potential of the adatoms. Here it is shown that the two types of gradients have opposing effects on the stability of the surface: Step bunching can be caused by impurities which either lower the adatom mobility, or increase the adatom chemical potential. In particular, impurities acting as random barriers (without affecting the adatom binding) cause step bunching, while for impurities acting as random traps the combination of the two effects reduces to a modification of the attachment boundary conditions at the steps. In this case attachment to descending steps, and thus step bunching, is favored if the impurities bind adatoms more weakly than the substrate.Comment: 7 pages, 3 figures. Substantial revisions and correction

    Quantized Conductance of a Single Magnetic Atom

    Full text link
    A single Co atom adsorbed on Cu(111) or on ferromagnetic Co islands is contacted with non-magnetic W or ferromagnetic Ni tips in a scanning tunneling microscope. When the Co atom bridges two non-magnetic electrodes conductances of 2e^2/h are found. With two ferromagnetic electrodes a conductance of e^2/h is observed which may indicate fully spin-polarized transport.Comment: 3 pages, 2 figure

    Dynamic generation of orbital quasiparticle entanglement in mesoscopic conductors

    Full text link
    We propose a scheme for dynamically creating orbitally entangled electron-hole pairs through a time-dependent variation of the electrical potential in a mesoscopic conductor. The time-dependent potential generates a superposition of electron-hole pairs in two different orbital regions of the conductor, a Mach-Zehnder interferometer in the quantum Hall regime. The orbital entanglement is detected via violation of a Bell inequality, formulated in terms of zero-frequency current noise. Adiabatic cycling of the potential, both in the weak and strong amplitude limit, is considered.Comment: 4 pages, 2 figures; references update

    Thermodynamical Detection of Entanglement by Maxwell's Demons

    Full text link
    Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract more work out of a heat bath via entangled systems than via classically correlated ones. We also analyze the work balance of the process as a heat engine, in connection with the Second Law of thermodynamics.Comment: 5 pages, 4 figures. v3: a figure added, a few refs added, & typos correcte

    Hall Voltage with the Spin Hall Effect

    Full text link
    The spin Hall effect does not generally result in a charge Hall voltage. We predict that in systems with inhomogeneous electron density in the direction perpendicular to main current flow, the spin Hall effect is instead accompanied by a Hall voltage. Unlike the ordinary Hall effect, we find that this Hall voltage is quadratic in the longitudinal electric field for a wide range of parameters accessible experimentally. We also predict spin accumulation in the bulk and sharp peaks of spin-Hall induced charge accumulation near the edges. Our results can be readily tested experimentally, and would allow the electrical measurement of the spin Hall effect in non-magnetic systems and without injection of spin-polarized electrons

    Quantum transport and momentum conserving dephasing

    Full text link
    We study numerically the influence of momentum-conserving dephasing on the transport in a disordered chain of scatterers. Loss of phase memory is caused by coupling the transport channels to dephasing reservoirs. In contrast to previously used models, the dephasing reservoirs are linked to the transport channels between the scatterers, and momentum conserving dephasing can be investigated. Our setup provides a model for nanosystems exhibiting conductance quantization at higher temperatures in spite of the presence of phononic interaction. We are able to confirm numerically some theoretical predictions.Comment: 7 pages, 4 figure
    • …
    corecore