3,708 research outputs found
SLAng: A language for defining service level agreements
Application or web services are increasingly being used across organisational boundaries. Moreover, new services are being introduced at the network and storage level. Languages to specify interfaces for such services have been researched and transferred into industrial practice. We investigate end-to-end quality of service (QoS) and highlight that QoS provision has multiple facets and requires complex agreements between network services, storage services and middleware services. We introduce SLAng, a language for defining Service Level Agreements (SLAs) that accommodates these needs. We illustrate how SLAng is used to specify QoS in a case study that uses a web services specification to support the processing of images across multiple domains and we evaluate our language based on it
Precise service level agreements
SLAng is an XML language for defining service level agreements, the part of a contract between the client and provider of an Internet service that describes the quality attributes that the service is required to possess. We define the semantics of SLAng precisely by modelling the syntax of the language in UML, then embedding the language model in an environmental model that describes the structure and behaviour of services. The presence of SLAng elements imposes behavioural constraints on service elements, and the precise definition of these constraints using OCL constitutes the semantic description of the language. We use the semantics to define a notion of SLA compatibility, and an extension to UML that enables the modelling of service situations as a precursor to analysis, implementation and provisioning activities
Dependable Distributed Computing for the International Telecommunication Union Regional Radio Conference RRC06
The International Telecommunication Union (ITU) Regional Radio Conference
(RRC06) established in 2006 a new frequency plan for the introduction of
digital broadcasting in European, African, Arab, CIS countries and Iran. The
preparation of the plan involved complex calculations under short deadline and
required dependable and efficient computing capability. The ITU designed and
deployed in-situ a dedicated PC farm, in parallel to the European Organization
for Nuclear Research (CERN) which provided and supported a system based on the
EGEE Grid. The planning cycle at the RRC06 required a periodic execution in the
order of 200,000 short jobs, using several hundreds of CPU hours, in a period
of less than 12 hours. The nature of the problem required dynamic
workload-balancing and low-latency access to the computing resources. We
present the strategy and key technical choices that delivered a reliable
service to the RRC06
Optimization of multivariate analysis for IACT stereoscopic systems
Multivariate methods have been recently introduced and successfully applied
for the discrimination of signal from background in the selection of genuine
very-high energy gamma-ray events with the H.E.S.S. Imaging Atmospheric
Cerenkov Telescope. The complementary performance of three independent
reconstruction methods developed for the H.E.S.S. data analysis, namely Hillas,
model and 3D-model suggests the optimization of their combination through the
application of a resulting efficient multivariate estimator. In this work the
boosted decision tree method is proposed leading to a significant increase in
the signal over background ratio compared to the standard approaches. The
improved sensitivity is also demonstrated through a comparative analysis of a
set of benchmark astrophysical sources.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in
Astroparticle Physic
Integrating species traits into species pools
Despite decades of research on the speciesâpool concept and the recent explosion of interest in traitâbased frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in speciesâpool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current traitâbased frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, speciesâpool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functionalâtrait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, traitâbased ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This speciesâpool functional diversity framework has the potential to advance our understanding of how localâ and regionalâscale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change
Honing the Mystical Ear: Making Sense of Music as a Means of Mystical Living
Thesis advisor: John BaldovinThesis advisor: Brian DunkleThesis (STL) â Boston College, 2021.Submitted to: Boston College. School of Theology and Ministry.Discipline: Sacred Theology
Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system
The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very
short flash of Cherenkov radiation generated by the cascade of relativistic
charged particles produced when a TeV gamma ray strikes the atmosphere. This
energetic air shower is initiated at an altitude of 10-30 km depending on the
energy and the arrival direction of the primary gamma ray. Whether the best
image of the shower is obtained by focusing the telescope at infinity and
measuring the Cherenkov photon angles or focusing on the central region of the
shower is a not obvious question. This is particularly true for large size IACT
for which the depth of the field is much smaller. We address this issue in
particular with the fifth telescope (CT5) of the High Energy Stereoscopic
System (H.E.S.S.); a 28 m dish large size telescope recently entered in
operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped
with a focus system, its working principle and the expected effect of focusing
depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference
(ICRC2013), Rio de Janeiro (Brazil
A second Cretaceous ornithuromorph bird from the Changma Basin, Gansu Province, Northwestern China
Finely-bedded lacustrine deposits of the Aptian (Lower Cretaceous) Xiagou Formation exposed in the Changma Basin of Gansu Province, northwestern China, have yielded numerous fossil vertebrate remains, including approximately 100 avian specimens. Though the majority of these birds appear referable to the ornithuromorph Gansus yumenensis, a number of enantiornithine fossils have also been recovered. Here we report on a specimen consisting of a complete, three-dimensionally preserved sternum, furcula, and sternal ribs that represents a second ornithuromorph taxon from the Xiagou Formation at Changma. The fossil exhibits morphologies that distinguish it from all previously-known Xiagou birds and demonstrate that it represents a derived non-ornithurine member of Ornithuromorpha. Though it is morphologically distinct from the equivalent elements of all other described ornithuromorphs, the material is too incomplete to justify the erection of a new taxon. Nonetheless, it increases the taxonomic diversity of the Xiagou avifauna, thereby expanding our knowledge of Early Cretaceous avian diversity and evolution
Long term variability of the blazar PKS 2155-304
International audienceTime variability of the photon flux is a known feature of active galactic nuclei (AGN) and in particular of blazars. The high frequency peaked BL Lac (HBL) object PKS 2155-304 is one of the brightest sources in the TeV band and has been monitored regularly with different instruments and in particular with the H.E.S.S. experiment above 200 GeV for more than 11 years. These data together with the observations of other instruments and monitoring programs like SMARTS (optical), Swift-XRT/RXTE/XMM-Newton (X-ray) and Fermi-LAT (100 MeV < E < 300 GeV) are used to characterize the variability of this object in the quiescent state over a wide energy range. Variability studies are made by looking at the lognormality of the light curves and at the fractional root mean square (rms) variability F var in several energy bands. Lognormality is found in every energy range and the evolution of F var with the energy shows a similar increase both in X-rays and in TeV bands
A method to localize gamma-ray bursts using POLAR
The hard X-ray polarimeter POLAR aims to measure the linear polarization of
the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts
(GRBs). The position in the sky of the detected GRBs is needed to determine
their level of polarization. We present here a method by which, despite of the
polarimeter incapability of taking images, GRBs can be roughly localized using
POLAR alone. For this purpose scalers are attached to the output of the 25
multi-anode photomultipliers (MAPMs) that collect the light from the POLAR
scintillator target. Each scaler measures how many GRB photons produce at least
one energy deposition above 50 keV in the corresponding MAPM. Simulations show
that the relative outputs of the 25 scalers depend on the GRB position. A
database of very strong GRBs simulated at 10201 positions has been produced.
When a GRB is detected, its location is calculated searching the minimum of the
chi2 obtained in the comparison between the measured scaler pattern and the
database. This GRB localization technique brings enough accuracy so that the
error transmitted to the 100% modulation factor is kept below 10% for GRBs with
fluence Ftot \geq 10^(-5) erg cm^(-2) . The POLAR localization capability will
be useful for those cases where no other instruments are simultaneously
observing the same field of view.Comment: 13 pages, 10 figure
- âŠ