1,806 research outputs found

    Unconditional Security of Three State Quantum Key Distribution Protocols

    Full text link
    Quantum key distribution (QKD) protocols are cryptographic techniques with security based only on the laws of quantum mechanics. Two prominent QKD schemes are the BB84 and B92 protocols that use four and two quantum states, respectively. In 2000, Phoenix et al. proposed a new family of three state protocols that offers advantages over the previous schemes. Until now, an error rate threshold for security of the symmetric trine spherical code QKD protocol has only been shown for the trivial intercept/resend eavesdropping strategy. In this paper, we prove the unconditional security of the trine spherical code QKD protocol, demonstrating its security up to a bit error rate of 9.81%. We also discuss on how this proof applies to a version of the trine spherical code QKD protocol where the error rate is evaluated from the number of inconclusive events.Comment: 4 pages, published versio

    Alien Registration- Laflamme, Emile J. (Sanford, York County)

    Get PDF
    https://digitalmaine.com/alien_docs/3235/thumbnail.jp

    Self-organizing input space for control of structures

    Get PDF
    We propose a novel type of neural networks for structural control, which comprises an adaptive input space. This feature is purposefully designed for sequential input selection during adaptive identification and control of nonlinear systems, which allows the input space to be organized dynamically, while the excitation is occurring. The neural network has the main advantages of (1) automating the input selection process for time series that are not known a priori; (2) adapting the representation to nonstationarities; and (3) using limited observations. The algorithm designed for the adaptive input space assumes local quasi-stationarity of the time series, and embeds local maps sequentially in a delay vector using the embedding theorem. The input space of the representation, which in our case is a wavelet neural network, is subsequently updated. We demonstrate that the neural net has the potential to significantly improve convergence of a black-box model in adaptive tracking of a nonlinear system. Its performance is further assessed in a full-scale simulation of an existing civil structure subjected to nonstationary excitations (wind and earthquakes), and shows the superiority of the proposed method

    Robust Quantum Communication Using A Polarization-Entangled Photon Pair

    Get PDF
    Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptography. In particular birefringence in optical fibers leads to decoherence of qubits encoded in polarization of photon. We show how to overcome this problem by doing single qubit quantum communication without a shared spatial reference frame and precise timing. Quantum information will be encoded in pair of photons using ``tag'' operations which corresponds to the time delay of one of the polarization modes. This method is robust against the phase instability of the interferometers despite the use of time-bins. Moreover synchronized clocks are not required in the ideal situation no photon loss case as they are only necessary to label the different encoded qubits.Comment: 4 pages, 2 figure
    • …
    corecore