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Noise and imperfection of realistic devices are major obstacles for implementing quantum cryptog-
raphy. In particular, birefringence in optical fibers leads to decoherence of qubits encoded in photon
polarization. We show how to overcome this problem by doing single qubit quantum communication
without a shared spatial reference frame and precise timing. Quantum information will be encoded in
pairs of photons using tag operations, which corresponds to the time delay of one of the polarization
modes. This method is robust against the phase instability of the interferometers despite the use of time
bins. Moreover synchronized clocks are not required in the ideal no photon loss case as they are
necessary only to label the different encoded qubits.
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Quantum mechanics allows the distribution of crypto-
graphic keys whose security is based on the laws of
physics instead of the difficulty of solving mathematical
problems [1,2]. Turning this idea into practical technolo-
gies brings exciting challenges. The first prototype for
quantum cryptography was built more than ten years
ago over a distance of 30 cm in free space [3] and used
the photons’ polarization as qubits of information. Since,
many quantum key distribution (QKD) experiments have
been realized through air and optic fibers [4]. One of the
obstacles to improve the fiber based prototypes is the
birefringence effects due to geometric asymmetries and
tension fluctuations which are a major impediment for
polarization based-coding experiments [5]. When the
coherence time of the photon is large compared to the
delay caused by polarization mode dispersion, the bire-
fringence can be represented by a time dependent unitary
transformation U�t� that acts on the polarization space.
The time dependence comes from the mechanical varia-
tions in the fiber over time and its rate varies with the
environmental conditions.

A possible solution to this problem is the application of
active feedback [6]. Tomography on some predetermined
polarization states could be used to approximate U for a
certain time interval [7,8]. By applying his approximation
of Uy before his measurements, Bob (the receiver) could
recover the states sent by Alice (the sender). However,
this technique is practical only if the rate of change
of U is relatively low. For this reason, the most successful
QKD experiments were not based on polarization coding,
such as the phase based experiment proposed by Bennett
and others using an unbalanced interferometer [9–11].
However, a good control of the polarization modes is
necessary to obtain a better visibility since some compo-
nents like phase modulators are polarization dependent
and the temperature of the interferometers must be stabi-
lized since very small fluctuations between the two arms
cause phase shifts that corrupt the quantum states.

Another very important example of a successful
QKD protocol is the plug-and-play setup [12,13]. Using
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a Faraday mirror [14], the photons sent by Bob are
reflected back in the fiber by Alice, who in turn encodes
information in their phase. By traveling back in the fiber,
the birefringence is reversed and, as can be shown, the
polarization state received by Bob is orthogonal to the
original one. Since Bob controls the polarization state of
the photon, he can make use of a polarized beam splitter
which increases the interference visibility. Although the
plug-and-play setup has very interesting characteristics, it
is not compatible with a non-Poissonian source which
could get rid of the multiphotons per pulse problem.
Another disadvantage is that the use of two-way quantum
cryptography is more vulnerable to a certain kind of
eavesdropping strategy: the Trojan attack. An eavesdrop-
per (i.e., Eve) could send photons in Alice’s laboratory,
catch them after they were reflected by the Faraday
mirror, and get some information about Alice’s setup
without being detected.

To circumvent the threat of the Trojan attack and the
instability of the interferometers, Walton et al. [15] pro-
posed a one-way protocol based on decoherence-free
subspaces in which each qubit is encoded in the time
and phase of a pair of photons. In this Letter, we propose
a new way to protect qubits encoded in polarization states
of a photon pair from birefringence effects in optical fiber.

The idea is to take advantage of the fact that birefrin-
gence can be well approximated by a collective error
model as long as the photons travel inside a time window
small compared to the variation of the birefringence.
Thus, if the effect of birefringence on one photon is
U�t�, on n photons it is U�t��n. This latter operator can
be interpreted as a rotation of the reference frame axis
and our protocol reduces to the problem of developing a
strategy to do quantum communication without a shared
reference frame.

In a recent Letter [16], Bartlett et al. showed it should
be possible to ‘‘communicate with perfect fidelity without
a shared reference frame at a rate that asymptotically
approaches one encoded qubit per transmitted qubit.’’ In
particular, they proposed a method to encode a qubit
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using four photons in a decoherence-free subspace of the
collective noise model. However, this required having full
control of the states of qubits. This is out of reach of
today’s technology. More recently, two realistic QKD
protocols that do not require any shared reference frame
have been proposed [17]. These protocols do not require a
general state of a qubit but only a set of nonorthogonal
states. It encodes qubits in both three and four photon
states, which makes the protocol more sensitive to photon
loss. For these reasons, we describe a two-photon protocol
robust against phase instability of the interferometer
without the need for a shared spatial reference frame or
synchronized clocks. If we neglect dispersion and discard
relativistic situations, then we are close to having no need
for a shared reference frame at all. (For reasons we
explain later, Bob needs to know the relative rate of
time flow in Alice’s reference frame.)

To explain our protocol we need to introduce the ‘‘tag’’
operation Ti which delay the photons in the state jii by a
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specific amount of time. Experimentally it can be imple-
mented using a polarized beam splitter to separate po-
larization modes in arms of different length before
recombination in the same optical path.

Suppose Alice inputs a two-photon state of the form
�jHVi � 
jVHi, where H and V correspond to the hori-
zontal and vertical polarization states of a photon. The
time delay between the two photons �tp, must be fixed by
Alice and known by Bob. It must be large enough such
that Bob’s apparatus can differentiate between the two
photons and that the tag operation will never change their
order of arrival. If Alice applies the tag operation TV on
the initial state then she will have �jHVTi � 
jVTHi,
where subscript T denotes the delay. Suppose some col-
lective noise U�2 (that includes a change of reference
frame) is applied to this state when it travels to Bob and
suppose also that Bob applies the tag operation TH0 when
he receives it. Up to a global phase, the state is then
mapped to
�
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where jH0i and jV0i notation is used since the state is
now defined in Bob’s reference frame. We used the fact
that the antisymmetric state j�	i � 1

��

2
p �jHVi 	 jVHi� is

invariant under collective noise and that j��i � 1
��

2
p 

�jHVi � jVHi� will be mapped to a superposition of the
triplet Bell states for which the �’s represent the relative
weights and phases and follow the equality k�1k

2 �
k�2k

2 � k�3k
2 � 1. For later convenience, we define

j��i � 1
��

2
p �jHHi � jVVi� and we drop the apostrophe

notation for simplicity.
The last operation is to project onto the states subspace

in which the photons are separated in time by exactly �tp;
i.e., both have been subjected to one tag operation. This
operation does not require synchronized clocks, since
Bob just needs to compare the arrival time of both
photons. If the interval of time between a pair of photons
is not �tp, then he discards these qubits, which happens

1	 k �1��1�
2 k2 of the time if we neglect photon loss.

Otherwise, Bob will obtain Alice’s initial state
�jHTVTi � 
jVTHTi with certainty. As could have been
shown using simple calculations, the final result is inde-
pendent of the phase coherence instability between both
arms of the interferometer in a way similar to the qubits
encoded in the Walton et al. protocol [15].

To check if the communication is efficient, k �1��1�
2 k2

must be estimated. Assuming that the randomness of the
birefringence is such that the distribution of the trans-
formation U over a large amount of time is uniform, the
Haar measure over the space of unitary matrices is used
to calculate the average hh jTy

1U
�2T1j ii which equals 1

3

independently of j i. Consequently, hk �1��1�
2 k2i � 1

3 ,
which means Bob will obtain Alice’s state with a proba-
bility of 1

3 . Yet, this result supposes that the unitary
matrix U will average uniformly over all possible values
during the communication time. To make the protocol
independent of the environment, Bob could apply a ran-
dom unitary matrix B�2 on the photon polarization states
just before making his tag operation. The distribution of
the operator B should correspond to the normalized Haar
measure. Experimentally, B could be implemented with
Pockels cells the same way as Franson and Jacobs in their
1995 experiment [6].

An improved version of the scheme exploiting some
partial knowledge of the shared reference frame to mod-
ify the transformation B to approximate the transforma-
tion Uy�t� would increase the ratio of useful encoded
qubits. Depending on the efficiency of the active feedback
mechanism and the rate of change of U�t�, the ratio could
converge to 1.

To measure the qubit in a particular basis, Bob could
use a normal symmetric beam splitter and consider the
result when each photon goes through a different branch,
as shown in Fig. 1. Define p such that p � 0 if the first
photon goes through branch b1 and 1 if it is the second
photon. Remark that the two photons arrive at the beam
splitter at different times and that Bob can differentiate
them. At the end of branch b1, Bob measures in his
diagonal fj�i; j	ig polarization basis. Define k such that
k � 0 if the outcome is j�i and 1 if it is j	i. The photon
on the other branch b2 must then be in the state
XpZk��jHi � 
jVi�, where X and Z are the correspond-
-2



FIG. 2. Implementation of a modified version of BB84 pro-
tocol based on qubits robust against collective noise. Quantum
states are generated through parametric down-converters
(PDC) supplemented by filters (F) and phase shifter (P).
Alice and Bob do their tag operation using polarized beam
splitters (PBS). The B operator is randomized uniformly or
determined by using a smart feedback mechanism. Bob mea-
sures the state in the computational or the diagonal basis
depending upon if he applied the identity (x � 0) or the
Hadamard gate (x � 1).

FIG. 1. After receiving the two photons and applying his tag
operation, Bob can use this circuit to measure the qubit
�jHVi � 
jVHi in any basis by adjusting the gate M with a
success probability of at least 1

8 . We refer to the text for more
details.

PRL 93, 220501 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
26 NOVEMBER 2004
ing Pauli operators. Using Pockels cells (M) on this sec-
ond branch and a polarized beam splitter, Bob can mea-
sure the qubit in any specific basis with a chance of
success reduced by a factor of at most 8, since at the
very least the measurement is successful when each pho-
ton exits from a different branch and p � k � 0.
Measurement in some bases will be successful more often
than others.

We have described a technique to encode a robust qubit
against collective noise and to measure it in any basis. We
now show how this could be useful for a realistic QKD
implementation. First, we describe the well-known QKD
protocol BB84 [2]. This protocol uses a set of four quan-
tum states consisting of two maximally conjugate basis
states j0i, j1i, and j�i � 1

��

2
p �j0i � j1i�. Alice randomly

chooses which basis she will use to encode qubits to send
Bob, who, upon arrival of a qubit, also chooses at random
in which of the two bases he will perform a measurement.
After repeating the protocol for a string of random bits,
they publicly share what basis they used for each qubit.
The bits for which they have used the same basis is used to
build the sifted key. Since Eve has no prior knowledge of
which basis Alice and Bob will use, any attempt of
eavesdropping will disturb the states and induce errors
in the sifted key with high probability. A portion of the
sifted key is used to detect possible eavesdropping. If the
error rate is lower than some given threshold, the leftover
bits will be transformed to the final secret key by using
error correction and privacy amplification [18,19].

To implement a protocol similar to BB84, Alice
needs to encode the states jHVTi, jVTHi, 1

��

2
p �jHVTi �

jVTHi�, and 1
��

2
p �jHVTi 	 jVTHi� using parametric down-

conversions, filters, and polarized beam splitters as shown
in Fig. 2. We have to note that the measurement procedure
described earlier works only if the state received by Bob
after postselection was of the form �1jHVi � �2jVHi,
where �i 2 C respecting a normalizing condition. This
condition may no longer be true if sources of noise other
than collective noise are considered or if we suppose that
Eve altered the state sent to Bob. In the latter case, Bob’s
state after postselection would look like �1jHVi �
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�2jVHi � �3jVVi � �4jHHi. To implement the provenly
secure BB84 protocol, Bob must be able to project that
state into the subspace in which Alice has encoded her
space, i.e., the space spanned by jHVi and jVHi. If Bob
wants to measure in the computational basis
(fjVHi; jHVig), then immediately after his tag operation
he simply needs to measure the jHi or jVi polarization of
each photon. In this case, he will also distinguish and be
able to discard the states jHHi and jVVi. The measure-
ment in the diagonal basis j��i is not as straightforward.
Suppose Bob applies an extra Hadamard gate on both
photons before measuring the polarization states. If �3 �
�4 � 0, then he measures j��i if both photons have the
same polarization and j�	i if they have different polar-
ization. In general, �3 � �4 � 0, but the uniformly dis-
tributed random rotation B performed by Bob (unknown
to Eve) when he received the state will destroy any phase
coherence between the states �1jHVi � �2jVHi, jHHi,
and jVVi from Eve’s perspective. Intuitively, this means
if Eve used the space spanned by fjVVi; jHHig it would be
the same as if she randomly sent one of j�	i or j��i to
Bob, giving her no advantage. The complexity of the
QKD security proof which includes coherent attacks re-
strains our argument, but the authors conjuncture that our
protocol is unconditionally secure with the same error
threshold as BB84. As a last remark, we note that only the
qubits that have survived the postselection are used to
build the sifted key to estimate the error rate and con-
struct the final secret key.

Earlier we discussed the possibility of using a feedback
mechanism to increase the success rate of the postselec-
tion. It could also be used in the QKD implementation
discussion above, but Bob must be careful with whatever
mechanism he uses since he must ensure the phase co-
herence among the three states �1jHVi � �2jVHi, jHHi,
and jVVi be lost from Eve’s perspective. A final random
phase gate would be enough since it does not affect the
success probability of the postselection but will destroy
the coherence between these states.

The advantages of our protocol over the plug-and-play
one are that this protocol is one way, so there is no need
-3
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to be as worried with the Trojan attack. Moreover, it does
not require interferometer stability as in the Walton et al.
protocol (by using decoherence-free subspace). Although
our protocol has similarities to the latter protocol, it is
distinct for the following reasons:

First, synchronized clocks are necessary in our proto-
col only to label the different photon pairs. In the Walton
et al. protocol, Bob must be able to distinguish between
photons that have been delayed once, twice, and not at all.
Our protocol just needs to compare the delay between the
two photons and not their particular time of arrival.
Consequently, it requires a much smaller order of timing
precision. For example, parametric down-conversion
sources with long pulse length no longer induce errors
caused by uncertainty in the emission time since both
photons are always created simultaneously. Note that if
the number of events in which simultaneous dark counts
on different detectors occur is negligible, extra timing
precision would not help Alice and Bob to reduce the
noise caused by the detector’s dark counts and is therefore
not necessary to our protocol.

Second, in theWalton et al. protocol, there is a 1
4 chance,

independent of the birefringence, that the photons will be
measured in the phase basis and a 3

4 chance of measuring
in the time basis. However, the optimal efficiency for the
ideal implementation of BB84 is a probability of mea-
surement equal to 1

2 in each basis. For this reason, Walton
et. al. indicate that the intrinsic efficiency of their scheme
was 1

4 . In the case where B is chosen from a uniform
distribution, our protocol would have an intrinsic effi-
ciency ratio of 1

6 since only a third of the photon pairs is
not discarded. However, depending on the feedback
mechanism, the intrinsic efficiency ratio could be higher
than 1

6 , up to 1
2 .

Third, the final state Bob uses is encoded in polariza-
tion, not in time and phase. A good control of the polar-
ization states allows Bob to get rid of the noise caused by
the polarization dependence of some experimental com-
ponents, like phase modulators.

In this Letter, we have given a realistic robust scheme
to do single qubit communication using two-photon states
per encoded qubit. This technique goes around the prob-
lem of birefringence in optical fiber, the requirement of
high precision synchronized timing and also the interfer-
ometer phase coherence instability. The protocol could be
slightly modified to exploit partial information about a
spatial reference frame to increase the bit rate by using
active feedback. We also explained how to implement a
slightly modified version of BB84 using the previously
mentioned methods.

We conclude with some problems that could make an
experimental implementation of our schemes more diffi-
cult. Depolarization could be a serious distance limitation
for our protocol, forcing us to use sources with longer
coherence times [4]. To prevent chromatic dispersion from
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affecting the time delays between the photons, the aver-
age wavelength of the photons should be chosen accord-
ing to the zero chromatic dispersion of the optical fiber
[4,20,21]. Finally, since our protocol encoded each qubit
with two photons, attenuation and detector’s inefficiencies
have a more significant affect on its efficiency compared
to one-photon protocols. Nevertheless, our proposal is in
reach of experimental implementation and provides an
elegant solution to the problem of birefringence in optical
fibers.
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