19,050 research outputs found
MEVTV Workshop on Nature and Composition of Surface Units on Mars
Topics addressed include: SNC meteorites and their potential for providing information about the geochemical evolution of Mars; remote sensing; photogeological inferences of Martian surface compositions; and interactions of the surface with volatiles in either the surface or the atmosphere
Daytime ClO over McMurdo in September 1987: Altitude profile retrieval accuracy
During the 1987 National Ozone Expedition, mm-wave emission line spectra of the 278.6 GHz rotational stratospheric ClO were observed at McMurdo Station, Antarctica. The results confirm the 1986 discovery of a lower stratospheric layer with approximately 100 times the normal amount of ClO; the 1987 observations, made with a spectrometer bandwidth twice that used in 1986, make possible a more accurate retrieval of the altitude profile of the low altitude component of stratospheric ClO from the pressure broadened line shape, down to approximately 16 km. The accuracy of the altitude profile retrievals is discussed, using the daytime (09:30 to 19:30, local time) data from 20 to 24 September, 1987 as an example. The signal strength averaged over this daytime period is approx. 85 percent of the midday peak value. The rate of ozone depletion implied by the observed ClO densities is also discussed
Quantitative observations of the behavior of anomalous low altitude ClO in the Antarctic spring Stratosphere, 1987
During the second National Ozone Expedition ground-based observations at McMurdo Station Antarctica were performed which resulted in a second season's measurement of abnormally large amounts of ClO in the Antarctic spring stratosphere. The original measurements of 1986, in which the presence of this anomalous layer was first discovered, were limited in low altitude recovery of the ClO mixing ratio profile by the restrictions of the spectral bandwidth (256 MHz) which was used to measure the pressure-broadened ClO emission line shape. The 1987 measurements were marked by the use of twice the spectral bandpass employed the previous year, and allow a better characterization of the ClO mixing ratio profile in the critical altitude range 18 to 25 km. In-situ aircraft measurements of ClO made over the Palmer Peninsula during Aug. and Sept. of 1987 by Anderson, et al. effectively determined the important question of the ClO mixing ratio profile at altitudes inaccessible to our technique, below approximately 18 to 18.5 km. These flights did not penetrate further than 75 deg S, however, (vs 78 deg S for McMurdo) and were thus limited to coverage near the outer boundaries of the region of severest ozone depletion over Antarctica in 1987, did not reach an altitude convincingly above that of the peak mixing ratio for ClO, and were not able to make significant observations of the diurnal variation of ClO. The two techniques, and the body of data recovered by each, thus complement one another in producing a full picture of the anomalous ClO layer intimately connected with the region of Antarctic spring ozone depletion. An analysis is presented of the mixing ratio profile from approximately 18 to 45 km, the diurnal behavior, and the secular change in ClO over McMurdo Station during Sept. and early Oct. 1987
Application of remote sensing to state and regional problems
The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items
Masses, luminosities and dynamics of galactic molecular clouds
Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies
Affine algebraic groups with periodic components
A connected component of an affine algebraic group is called periodic if all
its elements have finite order. We give a characterization of periodic
components in terms of automorphisms with finite number of fixed points. It is
also discussed which connected groups have finite extensions with periodic
components. The results are applied to the study of the normalizer of a maximal
torus in a simple algebraic group.Comment: 20 page
Dense Molecular Gas and the Role of Star Formation in the Host Galaxies of Quasi-Stellar Objects
New millimeter-wave CO and HCN observations of the host galaxies of
infrared-excess Palomar Green quasi-stellar objects (PG QSOs) previously
detected in CO are presented. These observations are designed to assess the
validity of using the infrared luminosity to estimate star formation rates of
luminous AGN by determining the relative significance of dust-heating by young,
massive stars and active galactic nuclei (AGN) in QSO hosts and IRAS galaxies
with warm, AGN-like infrared colors. The HCN data show the PG QSO host IZw1 and
most of the warm IRAS galaxies to have high L_IR / L'_HCN (>1600) relative to
the cool IRAS galaxy population for which the median L_IR / L'_HCN ~
890(+440,-470). If the assumption is made that the infrared emission from cool
IRAS galaxies is reprocessed light from embedded star-forming regions, then
high values of L_IR / L'_HCN are likely the result of dust heating by the AGN.
Further, if the median ratio of L'_HCN / L'_CO ~ 0.06 observed for Seyfert
galaxies and IZw1 is applied to the PG QSOs not detected in HCN, then the
derived L_IR / L'_HCN correspond to a stellar contribution to the production of
L_IR of ~ 7-39%, and star formation rates ~ 2-37 M_sun/yr are derived for the
QSO hosts. Alternatively, if the far-infrared is adopted as the star formation
component of the total infrared in cool galaxies, the stellar contributions in
QSO hosts to their L_FIR are up to 35% higher than the percentages derived for
L_IR. This raises the possibility that the L_FIR in several of the PG QSO
hosts, including IZw1, could be due entirely to dust heated by young, massive
stars. Finally, there is no evidence that the global HCN emission is enhanced
relative to CO in galaxies hosting luminous AGN.Comment: LaTex, 31 pages, including 9 postscript figures, AJ, in press
(December 2006
- …