148 research outputs found

    Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach

    Full text link
    We show how the scattering-into-cones and flux-across-surfaces theorems in Quantum Mechanics have very intuitive pathwise probabilistic versions based on some results by Carlen about large time behaviour of paths of Nelson diffusions. The quantum mechanical results can be then recovered by taking expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic

    Hardy Spaces on Weighted Homogeneous Trees

    Get PDF
    We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy spaces does not apply in this setting. We construct an atomic Hardy space H1(μ) on (V, d, μ) and investigate some of its properties, focusing in particular on real interpolation properties and on boundedness of singular integrals on H1(μ)

    Energy transfer in a fast-slow Hamiltonian system

    Get PDF
    We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems

    Global well-posedness of the 3-D full water wave problem

    Full text link
    We consider the problem of global in time existence and uniqueness of solutions of the 3-D infinite depth full water wave problem. We show that the nature of the nonlinearity of the water wave equation is essentially of cubic and higher orders. For any initial interface that is sufficiently small in its steepness and velocity, we show that there exists a unique smooth solution of the full water wave problem for all time, and the solution decays at the rate 1/t1/t.Comment: 60 page

    Concerning the Wave equation on Asymptotically Euclidean Manifolds

    Full text link
    We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (Rd,g)(\R^d, \mathfrak{g}), d3d \geq 3, when metric g\mathfrak{g} is non-trapping and approaches the Euclidean metric like xρ x ^{- \rho} with ρ>0\rho>0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ>1\rho> 1 and d=3d=3. Also, we establish the Strauss conjecture when the metric is radial with ρ>0\rho>0 for d=3d= 3.Comment: Final version. To appear in Journal d'Analyse Mathematiqu

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Near Sharp Strichartz estimates with loss in the presence of degenerate hyperbolic trapping

    Get PDF
    We consider an nn-dimensional spherically symmetric, asymptotically Euclidean manifold with two ends and a codimension 1 trapped set which is degenerately hyperbolic. By separating variables and constructing a semiclassical parametrix for a time scale polynomially beyond Ehrenfest time, we show that solutions to the linear Schr\"odiner equation with initial conditions localized on a spherical harmonic satisfy Strichartz estimates with a loss depending only on the dimension nn and independent of the degeneracy. The Strichartz estimates are sharp up to an arbitrary β>0\beta>0 loss. This is in contrast to \cite{ChWu-lsm}, where it is shown that solutions satisfy a sharp local smoothing estimate with loss depending only on the degeneracy of the trapped set, independent of the dimension

    Stable directions for small nonlinear Dirac standing waves

    Full text link
    We prove that for a Dirac operator with no resonance at thresholds nor eigenvalue at thresholds the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues close enough, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schr\"{o}dinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation.Comment: 62 page

    Алгоритм сжатия на основе вычисления скорости изменения ультразвукового сигнала

    Get PDF
    The intermittency structure of multihadronic e+e- annihilation is analyzed by evaluating the factorial moments F2-F5 in three-dimensional Lorentz invariant phase space as a function of the resolution scale. We interpret our data in the language of fractal objects. It turns out that the fractal dimension depends on the resolution scale in a way that can be attributed to geometrical resolution effects and dynamical effects, such as the pi-O Dalitz decay. The LUND 7.2 hadronization model provides an excellent description of the data. There is no indication of unexplained multiplicity fluctuations in small phase space regions
    corecore