273 research outputs found

    A cognitive task analysis of a visual analytic workflow: Exploring molecular interaction networks in systems biology

    Get PDF
    Background: Bioinformatics visualization tools are often not robust enough to support biomedical specialists’ complex exploratory analyses. Tools need to accommodate the workflows that scientists actually perform for specific translational research questions. To understand and model one of these workflows, we conducted a case-based, cognitive task analysis of a biomedical specialist’s exploratory workflow for the question: What functional interactions among gene products of high throughput expression data suggest previously unknown mechanisms of a disease? Results: From our cognitive task analysis four complementary representations of the targeted workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task taxonomy, and a mapping between cognitive tasks and user-centered visualization requirements. The representations capture the flows of cognitive tasks that led a biomedical specialist to inferences critical to hypothesizing. We created representations at levels of detail that could strategically guide visualization development, and we confirmed this by making a trial prototype based on user requirements for a small portion of the workflow. Conclusions: Our results imply that visualizations should make available to scientific users “bundles of features” consonant with the compositional cognitive tasks purposefully enacted at specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for essential metacognitive support

    Urinary Epidermal Growth Factor/Creatinine Ratio and Graft Failure in Renal Transplant Recipients:A Prospective Cohort Study

    Get PDF
    Graft failure (GF) remains a significant limitation to improve long-term outcomes in renal transplant recipients (RTR). Urinary epidermal growth factor (uEGF) is involved in kidney tissue integrity, with a reduction of its urinary excretion being associated with fibrotic processes and a wide range of renal pathologies. We aimed to investigate whether, in RTR, uEGF is prospectively associated with GF. In this prospective cohort study, RTR with a functioning allograft >= 1-year were recruited and followed-up for three years. uEGF was measured in 24-hours urine samples and normalized by urinary creatinine (Cr). Its association with risk of GF was assessed by Cox-regression analyses and its predictive ability by C-statistic. In 706 patients, uEGF/Cr at enrollment was 6.43 [IQR 4.07-10.77] ng/mg. During follow-up, 41(6%) RTR developed GF. uEGF/Cr was inversely associated with the risk of GF (HR 0.68 [95% CI 0.59-0.78]; P <0.001), which remained significant after adjustment for immunosuppressive therapy, estimated Glomerular Filtration Rate, and proteinuria. C-statistic of uEGF/Cr for GF was 0.81 (P <0.001). We concluded that uEGF/Cr is independently and inversely associated with the risk of GF and depicts strong prediction ability for this outcome. Further studies seem warranted to elucidate whether uEGF might be a promising marker for use in clinical practice

    A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

    Get PDF
    Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes

    Perspectives on a Way Forward to Implementation of Precision Medicine in Patients With Diabetic Kidney Disease; Results of a Stakeholder Consensus-Building Meeting

    Get PDF
    Aim: This study aimed to identify from different stakeholders the benefits and obstacles of implementing precision medicine in diabetic kidney disease (DKD) and to build consensus about a way forward in order to treat, prevent, or even reverse this disease. Methods: As part of an ongoing effort of moving implementation of precision medicine in DKD forward, a two-day consensus-building meeting was organized with different stakeholders involved in drug development and patient care in DKD, including patients, patient representatives, pharmaceutical industry, regulatory agencies representatives, health technology assessors, healthcare professionals, basic scientists, and clinical academic researchers. The meeting consisted of plenary presentations and discussions, and small group break-out sessions. Discussion topics were based on a symposium, focus groups and literature search. Benefits, obstacles and potential solutions toward implementing precision medicine were discussed. Results from the break-out sessions were presented in plenary and formed the basis of a broad consensus discussion to reach final conclusions. Throughout the meeting, participants answered several statement and open-ended questions on their mobile device, using a real-time online survey tool. Answers to the statement questions were analyzed descriptively. Results of the open-ended survey questions, the break-out sessions and the consensus discussion were analyzed qualitatively. Results and conclusion: Seventy-one participants from 26 countries attended the consensus-building meeting in Amsterdam, April 2019. During the opening plenary on the first day, the participants agreed with the statement that precision medicine is the way forward in DKD (n = 57, median 90, IQR [75–100]). Lack of efficient tools for implementation in practice and generating robust data were identified as significant obstacles. The identified benefits, e.g., improvement of the benefit-risk ratio of treatment, offer substantive incentives to find solutions for the identified obstacles. Earlier and increased multi-stakeholder collaboration and specific training may provide solutions to alter clinical and regulatory guidelines that lie at the basis of both obstacles and solutions. At the end of the second day, the opinion of the participants toward precision medicine in DKD was somewhat more nuanced (n = 45, median 83, IQR [70–92]) and they concluded that precision medicine is an important way forward in improving the treatment of patients with DKD

    The immune cell landscape in kidneys of patients with lupus nephritis.

    Get PDF
    Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies

    Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease : an exploratory study

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Background: A subset of individuals with type 1 diabetes mellitus (T1DM) are predisposed to developing diabetic kidney disease (DKD), the most common cause globally of end-stage kidney disease (ESKD). Emerging evidence suggests epigenetic changes in DNA methylation may have a causal role in both T1DM and DKD. The aim of this exploratory investigation was to assess differences in blood-derived DNA methylation patterns between individuals with T1DM-ESKD and individuals with long-duration T1DM but no evidence of kidney disease upon repeated testing to identify potential blood-based biomarkers. Blood-derived DNA from individuals (107 cases, 253 controls and 14 experimental controls) were bisulphite treated before DNA methylation patterns from both groups were generated and analysed using Illumina’s Infinium MethylationEPIC BeadChip arrays (n = 862,927 sites). Differentially methylated CpG sites (dmCpGs) were identified (false discovery rate adjusted p ≤ × 10–8 and fold change ± 2) by comparing methylation levels between ESKD cases and T1DM controls at single site resolution. Gene annotation and functionality was investigated to enrich and rank methylated regions associated with ESKD in T1DM. Results: Top-ranked genes within which several dmCpGs were located and supported by functional data with methylation look-ups in other cohorts include: AFF3, ARID5B, CUX1, ELMO1, FKBP5, HDAC4, ITGAL, LY9, PIM1, RUNX3, SEPTIN9 and UPF3A. Top-ranked enrichment pathways included pathways in cancer, TGF-β signalling and Th17 cell differentiation. Conclusions: Epigenetic alterations provide a dynamic link between an individual’s genetic background and their environmental exposures. This robust evaluation of DNA methylation in carefully phenotyped individuals has identified biomarkers associated with ESKD, revealing several genes and implicated key pathways associated with ESKD in individuals with T1DM.Peer reviewe

    Estimated GFR Trajectories in Pediatric and Adult Nephrotic Syndrome: Results From the Nephrotic Syndrome Study Network (NEPTUNE)

    Get PDF
    56% and 16% had PNL 50%, respectively. In both adults and pediatric patients, higher baseline eGFR was associated with higher PNL, whereas longer follow-up time was associated with lower PNL. Higher urine protein-creatinine ratio and steroid use were also associated with higher PNL in adults. Higher percentages of tubular atrophy and foot-process effacement were associated with lower and higher PNLs, respectively, in adults. Limitations: Relatively short follow-up time, inability to assess acute kidney injury events, and variable eGFR measurement frequency across patients. Conclusions: Although increasing follow-up time resulted in more linear trajectories, nonlinear eGFR trajectories were common in this cohort. Future studies in nephrotic syndrome should consider novel outcomes that do not rely on linearity assumptions.Rationale & Objective: Surrogate outcomes for end-stage kidney disease often assume linear changes, which may not reflect true estimated glomerular filtration rate (eGFR) trajectories. This study's objective was to characterize nonlinear eGFR trajectories in nephrotic syndrome. Study Design: Observational cohort study. Setting & Participants: Nephrotic Syndrome Study Network (NEPTUNE) is a multicenter study of adult and pediatric patients with proteinuria enrolled at clinically indicated kidney biopsy or initial presentation of disease (pediatric only). Predictors: Patient demographic, clinical, and pathology variables at study enrollment and follow-up time. Outcome: eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration (patients ≥ 18 years old) or modified Chronic Kidney Disease in Children Study–Schwartz (patients < 18 years) formulas. The probability of nonlinearity (PNL) was calculated for individual eGFR trajectories. Analytical Approach: Associations between predictors and PNL were assessed using multivariable linear regression. Results: 453 patients with ≥3 eGFR measurements and 1 or more year of follow-up were included (median follow-up, 3.6 years). Median PNL was 0.05

    Strategy and rationale for urine collection protocols employed in the NEPTUNE study

    Full text link
    Abstract Background Glomerular diseases are potentially fatal, requiring aggressive interventions and close monitoring. Urine is a readily-accessible body fluid enriched in molecular signatures from the kidney and therefore particularly suited for routine clinical analysis as well as development of non-invasive biomarkers for glomerular diseases. Methods The Nephrotic Syndrome Study Network (NEPTUNE; ClinicalTrials.gov Identifier NCT01209000) is a North American multicenter collaborative consortium established to develop a translational research infrastructure for nephrotic syndrome. This includes standardized urine collections across all participating centers for the purpose of discovering non-invasive biomarkers for patients with nephrotic syndrome due to minimal change disease, focal segmental glomerulosclerosis, and membranous nephropathy. Here we describe the organization and methods of urine procurement and banking procedures in NEPTUNE. Results We discuss the rationale for urine collection and storage conditions, and demonstrate the performance of three experimental analytes (neutrophil gelatinase-associated lipocalin [NGAL], retinol binding globulin, and alpha-1 microglobulin) under these conditions with and without urine preservatives (thymol, toluene, and boric acid). We also demonstrate the quality of RNA and protein collected from the urine cellular pellet and exosomes. Conclusions The urine collection protocol in NEPTUNE allows robust detection of a wide range of proteins and RNAs from urine supernatant and pellets collected longitudinally from each patient over 5 years. Combined with the detailed clinical and histopathologic data, this provides a unique resource for exploration and validation of new or accepted markers of glomerular diseases. Trial registration ClinicalTrials.gov Identifier NCT01209000http://deepblue.lib.umich.edu/bitstream/2027.42/116023/1/12882_2015_Article_185.pd
    • …
    corecore