2,242 research outputs found

    March 1971 wind tunnel tests of the Dorand DH 2011 jet flap rotor, volume 1

    Get PDF
    The results of wind tunnel tests, second series of tests performed in the NASA Ames 40 x 80 foot wind tunnel, of the DH 2011 jet-flap rotor are presented and analyzed. The tests have been focused on multicyclic effects and the capability of this rotor to reduce the vibratory loads and stresses in the blades. The reductions of the vibrations and stresses at tip speed ratio of 0.4 have attained 50%. The theory shows further reductions possible, reaching 80%. The results show that the performance characteristics after the modifications introduced since 1965 remained unchanged. The domain of investigation has been enlarged to include the tip speed ratios of 0.6 and 0.7. To analyze the complex aeroelastic phenomena a new analytical technique has been utilized to represent the mathematical model of the rotor. This technique, based on transfer matrices and transfer functions, appears very simple and it is believed that this analysis is applicable to many kinds of investigations involving large numbers of variables

    March 1971 wind tunnel tests of the Dorand DH 2011 jet flap motor, volume 2

    Get PDF
    Wind tunnel tests were conducted of the Dorand DH 2011D jet flap rotor. The data recorded during the tests consist of: (1) multicyclic cam coefficients, (2) stress analysis, (3) vibratory loads, (4) Fourier analysis of flap deflection, and (5) blade bending stress. Data are presented in the form of tables and graphs

    Multicyclic jet-flap control for alleviation of helicopter blade stresses and fuselage vibration

    Get PDF
    Results of wind tunnel tests of a 12 meter-diameter-rotor utilizing multicyclic jet-flap control deflection are presented. Analyses of these results are shown, and experimental transfer functions are determined by which optimal control vectors are developed. These vectors are calculated to eliminate specific harmonic bending stresses, minimize rms levels (a measure of the peak-to-peak stresses), or minimize vertical vibratory loads that would be transmitted to the fuselage. Although the specific results and the ideal control vectors presented are for a specific jet-flap driven rotor, the method employed for the analyses is applicable to similar investigations. A discussion of possible alternative methods of multicyclic control by mechanical flaps or nonpropulsive jet-flaps is presented

    Characterizing correlations of flow oscillations at bottlenecks

    Full text link
    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations

    Pedestrian Traffic: on the Quickest Path

    Full text link
    When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either "move as far as possible toward the destination" or - reformulated - "of all coordinates accessible in this time step move to the one with the smallest distance to the destination". Atop of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown, how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one, however, the tricky part - and therefore in a strict sense the contribution of this work - is a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, b) do this with limited computational effort, and c) keep agents' movement at very low densities unaltered

    Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    Full text link
    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced and applied to study the production of non-strange particles in heavy-ion reactions at Ekin=0.42AE_{\rm kin}=0.4-2A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with HADES and FOPI data. Predictions for particle production in π+A\pi+A collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor change

    Zircon dissolution in a ductile shear zone, Monte Rosa granite gneiss, northern Italy

    Get PDF
    The sizes, distributions and shapes of zircon grains within variably deformed granite gneiss from the western Alps have been studied. Zircon shows numerous indicators of a metamorphic response in both the host gneiss and a 5 cm wide continuous ductile shear zone, within which the zircon grain sizes range from <1 µm to >50 µm. However, the very fine grain sizes are virtually absent from grain boundaries. Within this zone, zircons consistently have more rounded and embayed margins, which are interpreted as evidence of dissolution in response to fluid influx during shearing. Zircons are preferentially located near metamorphic muscovite in both the host gneiss and the shear zone and tend to show the poorest crystal shape, indicating that fluids linked to the formation and presence of muscovite may enhance both the crystallization of zircon and its subsequent dissolution. Larger zircon crystals typically show a brittle response to deformation when adjacent to phyllosilicates, with fractures consistently perpendicular to the (001) mica cleavage. The variety of metamorphic behaviour observed for zircon indicates that it may be highly reactive in sub-solidus mid-crustal metamorphic environments

    Solving the Direction Field for Discrete Agent Motion

    Full text link
    Models for pedestrian dynamics are often based on microscopic approaches allowing for individual agent navigation. To reach a given destination, the agent has to consider environmental obstacles. We propose a direction field calculated on a regular grid with a Moore neighborhood, where obstacles are represented by occupied cells. Our developed algorithm exactly reproduces the shortest path with regard to the Euclidean metric.Comment: 8 pages, 4 figure

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    corecore