309 research outputs found
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of
having astrophysical origin. In this study, we analyze 11 years of IceCube data
and investigate 122 alert events and a selection of high-energy tracks detected
between 2009 and the end of 2021. This high-energy event selection (alert
events + high-energy tracks) has an average probability of to be of
astrophysical origin. We search for additional continuous and transient
neutrino emission within the high-energy events' error regions. We find no
evidence for significant continuous neutrino emission from any of the alert
event directions. The only locally significant neutrino emission is the
transient emission associated with the blazar TXS~0506+056, with a local
significance of , which confirms previous IceCube studies. When
correcting for 122 test positions, the global p-value is and is
compatible with the background hypothesis. We constrain the total continuous
flux emitted from all 122 test positions at 100~TeV to be below ~(TeV cm s) at 90% confidence assuming an
spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux.
Overall, we find no indication that alert events, in general, are linked to
lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap
A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events
This paper presents the results of a search for neutrinos that are spatially
and temporally coincident with 22 unique, non-repeating Fast Radio Bursts
(FRBs) and one repeating FRB (FRB121102). FRBs are a rapidly growing class of
Galactic and extragalactic astrophysical objects that are considered a
potential source of high-energy neutrinos. The IceCube Neutrino Observatory's
previous FRB analyses have solely used track events. This search utilizes seven
years of IceCube's cascade events which are statistically independent of the
track events. This event selection allows probing of a longer range of extended
timescales due to the low background rate. No statistically significant
clustering of neutrinos was observed. Upper limits are set on the
time-integrated neutrino flux emitted by FRBs for a range of extended
time-windows
First Search for Unstable Sterile Neutrinos with the IceCube Neutrino Observatory
We present a search for an unstable sterile neutrino by looking for a
matter-induced signal in eight years of atmospheric data collected
from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable)
three-neutrino and the 3+1 sterile neutrino models are disfavored relative to
the unstable sterile neutrino model, though with -values of 2.5\% and
0.81\%, respectively, we do not observe evidence for 3+1 neutrinos with
neutrino decay. The best-fit parameters for the sterile neutrino with decay
model from this study are ,
, and , where
is the decay-mediating coupling. The preferred regions from short-baseline
oscillation searches are excluded at 90\% C.L
Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube
Galactic PeVatrons are sources that can accelerate cosmic rays to PeV
energies. The high-energy cosmic rays are expected to interact with the
surrounding ambient material or radiation, resulting in the production of gamma
rays and neutrinos. To optimize for the detection of such associated production
of gamma rays and neutrinos for a given source morphology and spectrum, a
multi-messenger analysis that combines gamma rays and neutrinos is required. In
this study, we use the Multi-Mission Maximum Likelihood framework (3ML) with
IceCube Maximum Likelihood Analysis software (i3mla) and HAWC Accelerated
Likelihood (HAL) to search for a correlation between 22 known gamma-ray sources
from the third HAWC gamma-ray catalog and 14 years of IceCube track-like data.
No significant neutrino emission from the direction of the HAWC sources was
found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit
from the 22 sources. From the neutrino flux limit, we conclude that the
gamma-ray emission from five of the sources can not be produced purely from
hadronic interactions. We report the limit for the fraction of gamma rays
produced by hadronic interactions for these five sources
Density of GeV muons in air showers measured with IceTop
We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV
Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory
Gamma-ray bursts (GRBs) have long been considered a possible source of
high-energy neutrinos. While no correlations have yet been detected between
high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the
brightest GRB observed by Fermi-GBM to date and the first one to be observed
above an energy of 10 TeV - provides a unique opportunity to test for hadronic
emission. In this paper, we leverage the wide energy range of the IceCube
Neutrino Observatory to search for neutrinos from GRB 221009A. We find no
significant deviation from background expectation across event samples ranging
from MeV to PeV energies, placing stringent upper limits on the neutrino
emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst
GRB 221009
- …