10 research outputs found

    Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder

    Full text link
    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance.This research has been funded through projects FEDER MINECO INNPACTO IPT-2011-1132-010000, CTQ/2013/45875R, and PrometeoII/2014/040 (GVA).Tortajada-Genaro, LA.; Mena-Mollá, S.; Niñoles Rodenes, R.; Puigmule, M.; Viladevall, L.; Maquieira Catala, Á. (2016). Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Analytical and Bioanalytical Chemistry. 408(9):2339-2345. https://doi.org/10.1007/s00216-016-9332-3S233923454089Cortese S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): what every clinician should know. Eur J Paediatr Neurol. 2012;16:422–33.Contini V, Rovaris DL, Victor MM, Grevet EH, Rohde LA, Bau CH. Pharmacogenetics of response to methylphenidate in adult patients with attention-deficit/hyperactivity disorder (ADHD): a systematic review. Eur Neuropsychopharmacol. 2013;23:555–60.Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.Abul-Husn NS, Obeng AO, Sanderson SC, Gottesman O, Scott SA. Implementation and utilization of genetic testing in personalized medicine. Pharmacogenomics Pers Med. 2014;7:227.Altman RB, Flockhart D, Goldstein DB, editors. Principles of pharmacogenetics and pharmacogenomics. Cambridge: Cambridge University Press; 2012.Hawi Z, Cummins TDR, Tong J, Johnson B, Lau R, Samarrai W, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 2015;20:289–97.Limaye N. Pharmacogenomics, Theranostics and Personalized Medicine-the complexities of clinical trials: challenges in the developing world. Appl Transl Genomics. 2013;2:17–21.Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15:258–67.Kim S, Misra A. PharmGKB: the Pharmacogenomics Knowledge Base. Annu Rev Biomed Eng. 2007;9:289–320.Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta. 2008;609:139–59.Knez K, Spasic D, Janssen KP, Lammertyn J. Emerging technologies for hybridization based single nucleotide polymorphism detection. Analyst. 2014;139:353–70.Choi JY, Kim YT, Byun JY, Ahn J, Chung S, Gweon DG, et al. Integrated allele-specific polymerase chain reaction–capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Lab Chip. 2012;12:5146–54.Ragoussis J. Genotyping Technologies for Genetic Research. Annu Rev Genomics Hum Genet. 2009;10:117–33.Sethi D, Gandhi RP, Kuma P, Gupta KC. Chemical strategies for immobilization of oligonucleotides. Biotechnol J. 2009;4:1513–29.Bañuls MJ, Morais SB, Tortajada-Genaro LA, Maquieira A. Microarray Developed on Plastic Substrates. Microarray Technology: Methods and Applications, 2016; 37-51.Tortajada-Genaro LA, Rodrigo A, Hevia E, Mena S, Niñoles R, Maquieira A. Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products. Anal Bioanal Chem. 2015;407:7285–94.Kieling C, Genro JP, Hutz MH, Rohde LA. A current update on ADHD pharmacogenomics. Pharmacogenomics. 2010;11:407–19.Kim BN, Kim JW, Cummins TD, Bellgrove MA, Hawi Z, Hong SB, et al. Norepinephrine genes predict response time variability and methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder. J Clin Psychopharmacol. 2013;33:356–62.Carpentier PJ, Arias Vasquez A, Hoogman M, Onnink M, Kan CC, Kooij JJS, et al. Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. Eur Neuropsychopharmacol. 2013;23:448–57.Zhang Y, Haraksingh R, Grubert F, Abyzov A, Gerstein M, Weissman S, et al. Child development and structural variation in the human genome. Child Dev. 2013;84:34–48.Asari M, Watanabe S, Matsubara K, Shiono H, Shimizu K. Single nucleotide polymorphism genotyping by mini-primer allele-specific amplification with universal reporter primers for identification of degraded DNA. Anal Biochem. 2009;386:85–90.Choi JY, Kim YT, Ahn J, Kim KS, Gweon DG, Seo TS. Integrated allele-specific polymerase chain reaction–capillary electrophoresis microdevice for single nucleotide polymorphism genotyping. Biosens Bioelectron. 2012;35:327–34.Konstantou JK, Ioannou PC, Christopoulos TK. Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction. Eur J Hum Genet. 2009;17:105–11.Sebastian T, Cooney CG, Parker J, Qu P, Perov A, Golova JB, et al. Integrated amplification microarray system in a lateral flow cell for warfarin genotyping from saliva. Clin Chim Acta. 2014;429:198–205

    Genotyping of single nucleotide polymorphisms by primer extension reaction and a dual-analyte bio/chemiluminometric assay

    No full text
    Primer extension reaction (PEXT) is the most widely used approach to genotyping of single nucleotide polymorphisms (SNP). It is based on the high accuracy of nucleotide incorporation by the DNA polymerase. We propose a dual-analyte bio/chemiluminometric method for the simultaneous detection of the PEXT reaction products of the normal and mutant allele in a high sample-throughput format. PCR-amplified DNA fragments that span the SNP of interest are subjected to two PEXT reactions using normal and mutant primers in the presence of digoxigenin-dUTP and biotin-dUTP. Both primers contain a d(A)30 segment at the 5′-end but differ in the final nucleotide at the 3′-end. Under optimized conditions only the primer that is perfectly complementary with the interrogated DNA will be extended by DNA polymerase and lead to a digoxigenin- or biotin-labeled product. The products of the PEXT reactions are mixed, denatured, and captured in microtiter wells through hybridization with immobilized oligo(dT) strands. Detection is performed by adding a mixture of antidigoxigenin-alkaline phosphatase (ALP) conjugate and a streptavidin-aequorin conjugate. The flash-type bioluminescent reaction of aequorin is triggered by the addition of Ca2+. ALP is then measured by adding the appropriate chemiluminogenic substrate. The method was evaluated by genotyping two SNPs of the human mannose-binding lectin gene (MBL2) and one SNP of the cytochrome P450 gene CYP2D6. Patient genotypes showed 100% concordance with direct DNA sequencing data. © 2007 Springer-Verlag

    Visual screening for JAK2V617F mutation by a disposable dipstick

    No full text
    During the last 5 years, it was discovered that the JAK2V617F somatic mutation is present in virtually all patients with polycythemia vera and a large proportion of patients with essential thrombocythemia, primary myelofibrosis, and refractory anemia with ring sideroblasts and thrombocytosis. As a result, JAK2V617F was incorporated as a new clonal marker in the 2008 revision of the WHO diagnostic criteria. Current methods for JAK2 genotyping include direct sequencing, pyrosequencing, allele-specific PCR with electrophoresis, restriction fragment length polymorphism, real-time PCR, DNA-melting curve analysis, and denaturing HPLC. Some of these methods are labor intensive and time consuming, while the others require specialized costly equipment and reagents. We report a method for direct detection of the JAK2V617F allele by the naked eye using a dipstick test in a dry-reagent format. The method comprises a triprimer PCR combined with visual detection of the products within minutes by the dipstick test. Specialized instrumentation is not involved. The requirements for highly qualified technical personnel are minimized. Because the detection reagents exist in dry form on the dipstick, there is no need for multiple pipetting and incubation steps. © 2010 Springer-Verlag

    Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction

    No full text
    We have developed a dry-reagent dipstick test for simultaneous visual detection of two alleles in single nucleotide polymorphisms (SNPs). The strip comprises two test zones and a control zone. Oligonucleotide-functionalized gold nanoparticles are used as reporters. PCR-amplified DNA that spans the interrogated sequence is subjected to primer extension (PEXT) reactions using allele-specific primers. Digoxigenin-dUTP and biotin-dUTP are incorporated in the extended fragments. The primers contain an oligo(dA) segment at the 5′ end. The PEXT products are applied to the sample area of the strip, which is then immersed in the appropriate buffer. As the buffer migrates along the strip by capillary action, the extension products of the two alleles are captured at the test zones from immobilized anti-digoxigenin and streptavidin, whereas the oligo(dA) segment of the primers hybridizes with oligo(dT) strands attached to gold nanoparticles, thus generating characteristic red lines. The excess nanoparticles are captured from immobilized oligo(dA) strands at the control zone of the strip. The test was applied to the genotyping of two SNPs of the Toll-like receptor 4 gene (Asp299Gly and Thr399Ile), one SNP of CYP2C19 gene (CYP2C19*3) and one SNP of the TPMT gene (TPMT*2). Contrary to most genotyping methods, the dipstick test does not require costly specialized equipment for detection of PEXT products. The PCR product is pipetted directly into the PEXT reaction mixture without prior purification. The high sensitivity of the strip allows completion of PEXT reaction in three cycles only (7 min). The visual detection of both alleles is complete in 15 min
    corecore