193 research outputs found

    The nature of the continuum limit in strongly coupled quenched QED

    Get PDF
    We review the results of large scale simulations of noncompact quenched QEDQED which use spectrum and Equation of State calculations to determine the theory's phase diagram, critical indices, and continuum limit. The resulting anomalous dimensions are in good agreement with Schwinger-Dyson solutions of the ladder graphs of conventional QEDQED and they satisfy the hyperscaling relations expected of a relativistic renormalizable field theory. The spectroscopy results satisfy the constraints of the Goldstone mechanism and PCAC, and may be indicative of Technicolor versions of the Standard Model which are strongly coupled at short distances.Comment: (talk given at the XXVI ICHEP, Dallas, TX, Aug 6-12 92), 6 pp., ILL-(TH)-92-#2

    QED on a momentum lattice

    Full text link
    We investigate the possibility of doing momentum space lattice simulations as an alternative to the conventional method. The procedure is introduced and tested for quenched QED2 and quenched QED3. Interesting physical applications to unquenched QED3 and quenched QED4 are also briefly discussed.Comment: 3 pages, To appear in the proceedings of the LATTICE'93 conference, ILL-(TH)-93-2

    Spectroscopy, Equation Of State And Monopole Percolation In Lattice QED With Two Flavors

    Full text link
    Non-compact lattice QED with two flavors of light dynamical quarks is simulated on 16416^4 lattices, and the chiral condensate, monopole density and susceptibility and the meson masses are measured. Data from relatively high statistics runs at relatively small bare fermion masses of 0.005, 0.01, 0.02 and 0.03 (lattice units) are presented. Three independent methods of data analysis indicate that the critical point occurs at ÎČ=0.225(5)\beta =0.225(5) and that the monopole condensation and chiral symmetry breaking transitions are coincident. The monopole condensation data satisfies finite size scaling hypotheses with critical indices compatible with four dimensional percolation. The best chiral equation of state fit produces critical exponents (ÎŽ=2.31\delta=2.31, ÎČmag=0.763\beta_{mag}=0.763) which deviate significantly from mean field expectations. Data for the ratio of the sigma to pion masses produces an estimate of the critical index ÎŽ\delta in good agreement with chiral condensate measurements. In the strong coupling phase the ratio of the meson masses are Mσ2/Mρ2≈0.35M_\sigma^2/M_\rho^2\approx 0.35, MA12/Mρ2≈1.4M_{A_1}^2/M_\rho^2\approx 1.4 and Mπ2/Mρ2≈0.0M_\pi^2/M_\rho^2\approx 0.0, while on the weak coupling side of the transition Mπ2/Mρ2≈1.0M_\pi^2/M_\rho^2\approx 1.0, MA12/Mρ2≈1.0M_{A_1}^2/M_\rho^2\approx 1.0, indicating the restoration of chiral symmetry.\footnote{\,^{}}{August 1992}Comment: 21 pages, 24 figures (not included

    L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Get PDF
    L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5â€Č-nucleotidase (5â€Č-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5â€Č-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5â€Č-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake

    Critical region of the finite temperature chiral transition

    Get PDF
    We study a Yukawa theory with spontaneous chiral symmetry breaking and with a large number N of fermions near the finite temperature phase transition. Critical properties in such a system can be described by the mean field theory very close to the transition point. We show that the width of the region where non-trivial critical behavior sets in is suppressed by a certain power of 1/N. Our Monte Carlo simulations confirm these analytical results. We discuss implications for the chiral phase transition in QCD.Comment: 18 page

    The Landau Pole at Finite Temperature

    Get PDF
    We study the Landau pole in the lambda phi^4 field theory at non-zero and large temperatures. We show that the position of the thermal Landau pole Lambda_L(T) is shifted to higher energies with respect to the zero temperature Landau pole Lambda_L(0). We find for high temperatures T > Lambda_L(0), Lambda_L(T) simeq pi^2 T / log (T / Lambda_L(0)). Therefore, the range of applicability in energy of the lambda phi^4 field theory increases with the temperature.Comment: LaTex, 6 pages, 2 .ps figures. Improved version. To appear in Phys. Rev. D, Rapid Communication

    Chiral condensate of lattice QCD with massless quarks from the probability distribution function method

    Full text link
    We apply the probability distribution function method to the study of chiral properties of QCD with quarks in the exact massless limit. A relation among the chiral condensate, zeros of the Bessel function and eigenvalue of Dirac operator is also given. The chiral condensate in this limit can be measured with small number of eigenvalues of the massless Dirac operator and without any ambiguous mass extrapolation. Results for SU(3) gauge theory with quenched Kogut-Susskind quarks on the 10410^4 lattice are shown

    Kosterlitz-Thouless Universality in a Fermionic System

    Full text link
    A new extension of the attractive Hubbard model is constructed to study the critical behavior near a finite temperature superconducting phase transition in two dimensions using the recently developed meron-cluster algorithm. Unlike previous calculations in the attractive Hubbard model which were limited to small lattices, the new algorithm is used to study the critical behavior on lattices as large as 128×128128\times 128. These precise results for the first time show that a fermionic system can undergo a finite temperature phase transition whose critical behavior is well described by the predictions of Kosterlitz and Thouless almost three decades ago. In particular it is confirmed that the spatial winding number susceptibility obeys the well known predictions of finite size scaling for T<TcT<T_c and up to logarithmic corrections the pair susceptibility scales as L2−ηL^{2-\eta} at large volumes with 0≀η≀0.250\leq\eta\leq 0.25 for 0≀T≀Tc0\leq T\leq T_c.Comment: Revtex format; 4 pages, 2 figure
    • 

    corecore