45 research outputs found

    From barren plateaus through fertile valleys: Conic extensions of parameterised quantum circuits

    Full text link
    Optimisation via parameterised quantum circuits is the prevalent technique of near-term quantum algorithms. However, the omnipresent phenomenon of barren plateaus - parameter regions with vanishing gradients - sets a persistent hurdle that drastically diminishes its success in practice. In this work, we introduce an approach - based on non-unitary operations - that favours jumps out of a barren plateau into a fertile valley. These operations are constructed from conic extensions of parameterised unitary quantum circuits, relying on mid-circuit measurements and a small ancilla system. We further reduce the problem of finding optimal jump directions to a low-dimensional generalised eigenvalue problem. As a proof of concept we incorporate jumps within state-of-the-art implementations of the Quantum Approximate Optimisation Algorithm (QAOA). We demonstrate the extensions' effectiveness on QAOA through extensive simulations, showcasing robustness against barren plateaus and highly improved sampling probabilities of optimal solutions.Comment: 6+2 pages, 3 figure

    Hydrogen Bond Network between Amino Acid Radical Intermediates on the Proton-Coupled Electron Transfer Pathway of E. coli α2 Ribonucleotide Reductase

    Get PDF
    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. 2H electron–nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed

    Determination of the warfarin inhibition constant K<sub>i</sub> for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay

    No full text
    Background: Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose–response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data. Methods: We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki. Results: Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay. Conclusion: The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay. General significance: In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results

    CALCULATING LEAF BOUNDARY LAYER PARAMETERS WITH THE TWO-DIMENSIONAL MODEL 2DLEAF COMPARING TRANSPIRATION RATES OF NORMAL (CV. DESIREE) AND TRANSGENIC (SUCROSE TRANSPORT ANTISENSE) POTATO PLANTS

    No full text
    The leaf boundary layer, i. e. the layer of air adjacent to a leaf surface in which gas flow is significantly influenced by the leaf, considerably affects leaf gas exchange. Numerous factors, both external conditions and leaf properties, have a strong influence on boundary layer characteristics and the challenge to develop a reliable model of this link in the leaf gas exchange pathway has persisted for decades. Two parameters, the boundary layer thickness, d, and the ratio, B, of the diffusion coefficients of gases in the boundary layer and in the intercellular space, were shown to be sufficient to represent the effect of the boundary layer in a two-dimensional leaf gas exchange model 2DLEAF. An algorithm for calculation of these parameters is described and applied to simulate the transpiration rate of leaves in normal (cv. Desiree) and transgenic (expressing a mRNA antisense construct targeted to the cp-fructose-6-bisphosphate phosphatase) potato plants (Solanum tuberosum). For these leaves, both gas exchange and leaf anatomy have been studied. Parameters d and B were different for normal and transgenic leaves, and they expressed real differences in anatomy and surface properties

    The thermal stability of topologically close-packed phases in the single-crystal Ni-base superalloy ERBO/1

    No full text
    In Ni-base superalloys, the addition of refractory elements such as Cr, Mo, Co, W, and Re is necessary to increase the creep resistance. Nevertheless, these elements induce the formation of different kinds of intermetallic phases, namely, the topologically close-packed (TCP) phases. This work focuses on intermetallic phases present in the second-generation single-crystal (SX) Ni-base superalloy ERBO/1. In the as-cast condition, the typical γ/γ′ structure is accompanied by undesirable intermetallic phases located in the interdendritic regions. The nature of these precipitates as well as their thermal stability between 800 and 1200 °C has been investigated by isothermal heat treatments. The investigation techniques include DSC, SEM, EDX, and TEM. The experimental information is complemented by (1) comparison with a structure map to link the local chemical composition with phase stability, as well as (2) thermodynamic calculations based on the CALPHAD method to determine the occurrence and composition of phases during solidification and in equilibrium conditions. The TCP phases Laves, µ and σ were identified in various temperature/time ranges. © 2015, Springer Science+Business Media New York

    An approach to the standardization of accident and injury registration systems (STAIRS) in Europe

    No full text
    STAIRS is a European Commission funded study whose aim is to produce a set of guidelines for a harmonised, crash injury database. The need to evaluate the effectiveness of the forthcoming European Union front and side impact directives has emphasised the need for real world crash injury data-sets that can be representative of the crash population throughout Europe. STAIRS will provide a methodology to achieve this. The ultimate aim of STAIRS is to produce a set of data collection tools which will aid decision making on vehicle crashworthiness as well as providing a means to evaluate the effectiveness of safety regulations. This paper will disseminate the up-to-date findings of the group as they try to harmonise their methods. The stage has been reached where studies into the diverse methods of the UK, French and German systems of crash injury investigation have been undertaken. An assessment has already been made of the relationships between the three current systems in order to define the areas of agreement and divergence. The conclusions reached stated that there were many areas that are already closely related and that the differences were only at the detailed level. With the emphasis on secondary safety and injury causation, core data sets were decided upon, taking into account: vehicle description, collision configuration, structural response of vehicles, restraint and airbag performance, child restraint performance, Euro NCAP, pedestrian and vehicle occupant kinematics, injury description and causation. Each variable was studied objectively, the important elements isolated and developed into a form that all partners were agreeable on. A glossary of terms is being developed as the project progresses which includes ISO standards and other definitions from the associated CAREPLUS project, which addresses the comparability of national data sets. A major consideration of the group was the data collection method to be employed. The strengths and weaknesses of each study were investigated to obtain a clear idea of which aspects offered the best way forward. The quality of this information and transference into a common format, as well as the necessary error checking systems to be employed have just been completed and are described. In tandem with this area of study the problem of the statistical relationship of each sample to the national population is also being investigated. The study proposes a mechanism to use a sample of crash injury data to represent the national and international crash injury proble
    corecore