1,643 research outputs found
Knee joint instability and exercise therapy in patients with osteoarthritis of the knee
Dekker, J. [Promotor]Steultjens, M.P.M. [Promotor]Lems, W.F. [Copromotor]Roorda, L.D. [Copromotor
Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050
This paper presents estimates for global N and P emissions from sewage for the period 1970-2050 for the four Millennium Ecosystem Assessment scenarios. Using country-specific projections for population and economic growth, urbanization, development of sewage systems, and wastewater treatment installations, a rapid increase in global sewage emissions is predicted, from 6.4 Tg of N and 1.3 Tg of P per year in 2000 to 12.0-15.5 Tg of N and 2.4-3.1 Tg of P per year in 2050. While North America (strong increase), Oceania (moderate increase), Europe (decrease), and North Asia (decrease) show contrasting developments, in the developing countries, sewage N and P discharge will likely increase by a factor of 2.5 to 3.5 between 2000 and 2050. This is a combined effect of increasing population, urbanization, and development of sewage systems. Even in optimistic scenarios for the development of wastewater treatment systems, global N and P flows are not likely to declin
Doppler cooling of calcium ions using a dipole-forbidden transition
Doppler cooling of calcium ions has been experimentally demonstrated using
the S1/2 to D5/2 dipole-forbidden transition. Scattering forces and
fluorescence levels a factor of 5 smaller than for usual Doppler cooling on the
dipole allowed S1/2 to P1/2 transition have been achieved. Since the light
scattered from the ions can be monitored at (violet) wavelengths that are very
different from the excitation wavelengths, single ions can be detected with an
essentially zero background level. This, as well as other features of the
cooling scheme, can be extremely valuable for ion trap based quantum
information processing.Comment: 4 pages, 4 figures, minor changes to commentary and reference
Fast accumulation of ions in a dual trap
Transporting charged particles between different traps has become an
important feature in high-precision spectroscopy experiments of different
types. In many experiments in atomic and molecular physics, the optical probing
of the ions is not carried out at the same location as the creation or state
preparation. In our double linear radio-frequency trap, we have implemented a
fast protocol allowing to shuttle large ion clouds very efficiently between
traps, in times shorter than a millisecond. Moreover, our shuttling protocol is
a one-way process, allowing to add ions to an existing cloud without loss of
the already trapped sample. This feature makes accumulation possible, resulting
in the creation of large ion clouds. Experimental results show, that ion clouds
of large size are reached with laser-cooling, however, the described mechanism
does not rely on any cooling process
Correcting symmetry imperfections in linear multipole traps
Multipole radio-frequency traps are central to collisional experiments in
cryogenic environments. They also offer possibilities to generate new type of
ion crystals topologies and in particular the potential to create infinite
1D/2D structures: ion rings and ion tubes. However, multipole traps have also
been shown to be very sensitive to geometrical misalignment of the trap rods,
leading to additional local trapping minima. The present work proposes a method
to correct non-ideal potentials, by modifying the applied radio-frequency
amplitudes for each trap rod. This approach is discussed for the octupole trap,
leading to the restitution of the ideal Mexican-Hat-like pseudo-potential,
expected in multipole traps. The goodness of the compensation method is
quantified in terms of the choice of the diagnosis area, the residual trapping
potential variations, the required adaptation of the applied radio-frequency
voltage amplitudes, and the impact on the trapped ion structures. Experimental
implementation for macroscopic multipole traps is also discussed, in order to
propose a diagnostic method with respect to the resolution and stability of the
trap drive. Using the proposed compensation technique, we discuss the
feasibility of generating a homogeneous ion ring crystal, which is a measure of
quality for the obtained potential well
Non-exponential one-body loss in a Bose-Einstein condensate
We have studied the decay of a Bose-Einstein condensate of metastable helium
atoms in an optical dipole trap. In the regime where two- and three-body losses
can be neglected we show that the Bose-Einstein condensate and the thermal
cloud show fundamentally different decay characteristics. The total number of
atoms decays exponentially with time constant tau; however, the thermal cloud
decays exponentially with time constant (4/3)tau and the condensate decays much
faster, and non-exponentially. We show that this behaviour, which should be
present for all BECs in thermal equilibrium with a considerable thermal
fraction, is due to a transfer of atoms from the condensate to the thermal
cloud during its decay.Comment: The intuitive explanation of the atomic transfer effect has been
correcte
Parallel ion strings in linear multipole traps
Additional radio-frequency (rf) potentials applied to linear multipole traps
create extra field nodes in the radial plane which allow one to confine single
ions, or strings of ions, in totally rf field-free regions. The number of nodes
depends on the order of the applied multipole potentials and their relative
distance can be easily tuned by the amplitude variation of the applied
voltages. Simulations using molecular dynamics show that strings of ions can be
laser cooled down to the Doppler limit in all directions of space. Once cooled,
organized systems can be moved with very limited heating, even if the cooling
process is turned off
Metastable Feshbach Molecules in High Rotational States
We experimentally demonstrate Cs2 Feshbach molecules well above the
dissociation threshold, which are stable against spontaneous decay on the
timescale of one second. An optically trapped sample of ultracold dimers is
prepared in an l-wave state and magnetically tuned into a region with negative
binding energy. The metastable character of these molecules arises from the
large centrifugal barrier in combination with negligible coupling to states
with low rotational angular momentum. A sharp onset of dissociation with
increasing magnetic field is mediated by a crossing with a g-wave dimer state
and facilitates dissociation on demand with a well defined energy.Comment: 4 pages, 5 figure
- …