44 research outputs found
Large amplitude oscillatory motion along a solar filament
Large amplitude oscillations of solar filaments is a phenomenon known for
more than half a century. Recently, a new mode of oscillations, characterized
by periodical plasma motions along the filament axis, was discovered. We
analyze such an event, recorded on 23 January 2002 in Big Bear Solar
Observatory H filtergrams, in order to infer the triggering mechanism
and the nature of the restoring force. Motion along the filament axis of a
distinct buldge-like feature was traced, to quantify the kinematics of the
oscillatory motion. The data were fitted by a damped sine function, to estimate
the basic parameters of the oscillations. In order to identify the triggering
mechanism, morphological changes in the vicinity of the filament were analyzed.
The observed oscillations of the plasma along the filament was characterized by
an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period
of 50 min, and damping time of 115 min. We interpret the trigger in terms of
poloidal magnetic flux injection by magnetic reconnection at one of the
filament legs. The restoring force is caused by the magnetic pressure gradient
along the filament axis. The period of oscillations, derived from the
linearized equation of motion (harmonic oscillator) can be expressed as
, where represents the Alfv\'en speed based on the
equilibrium poloidal field . Combination of our measurements with
some previous observations of the same kind of oscillations shows a good
agreement with the proposed interpretation.Comment: Astron. Astrophys., 2007, in pres
On-disk coronal rain
Small and elongated, cool and dense blob-like structures are being reported
with high resolution telescopes in physically different regions throughout the
solar atmosphere. Their detection and the understanding of their formation,
morphology and thermodynamical characteristics can provide important
information on their hosting environment, especially concerning the magnetic
field, whose understanding constitutes a major problem in solar physics. An
example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium
observed in active region loops, which consists of cool and dense chromospheric
blobs falling along loop-like paths from coronal heights. So far, only off-limb
coronal rain has been observed and few reports on the phenomenon exist. In the
present work, several datasets of on-disk H{\alpha} observations with the CRisp
Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are
analyzed. A special family of on-disk blobs is selected for each dataset and a
statistical analysis is carried out on their dynamics, morphology and
temperatures. All characteristics present distributions which are very similar
to reported coronal rain statistics. We discuss possible interpretations
considering other similar blob-like structures reported so far and show that a
coronal rain interpretation is the most likely one. Their chromospheric nature
and the projection effects (which eliminate all direct possibility of height
estimation) on one side, and their small sizes, fast dynamics, and especially,
their faint character (offering low contrast with the background intensity) on
the other side, are found as the main causes for the absence until now of the
detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
Dynamism in the solar core
Recent results of a mixed shell model heated asymmetrically by transient
increases in nuclear burning indicate the transient generation of small hot
spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot
bubbles are followed by a nonlinear differential equation system with finite
amplitude non-homologous perturbations which is solved in a solar model. Our
results show the possibility of a direct connection between the dynamic
phenomena of the solar core and the atmospheric activity. Namely, an initial
heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach
the outer convective zone. Our calculations show that a hot bubble can arrive
into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high
speed, up to 10 km s-1, approaching the local sound speed. We point out that
the developing sonic boom transforms the shock front into accelerated particle
beam injected upwards into the top of loop carried out by the hot bubble above
its forefront traveling from the solar interior. As a result, a new perspective
arises to explain flare energetics. We show that the particle beams generated
by energetic deep-origin hot bubbles in the subphotospheric layers have masses,
energies, and chemical compositions in the observed range of solar
chromospheric and coronal flares. It is shown how the emergence of a hot bubble
into subphotospheric regions offers a natural mechanism that can generate both
the eruption leading to the flare and the observed coronal magnetic topology
for reconnection. We show a list of long-standing problems of solar physics
that our model explains. We present some predictions for observations, some of
which are planned to be realized in the near future.Comment: 44 pages, 20 figure
Synthesis of carboxylated derivatives of poly(isobutylene-co-isoprene) by azide–alkyne “click” chemistry
The final publication is available at Springer via https://dx.doi.org/10.1038/s41428-018-0130-yThe synthesis of carboxylated derivatives of poly(isobutylene-co-isoprene) (isobutylene–isoprene rubber, IIR) with substitution levels ranging from 1 to 4 mol% and different spacer lengths was accomplished through azide–alkyne Huisgen cycloaddition. Azido-functionalized IIR was first prepared by reacting brominated IIR with sodium azide to full conversion in a 90:10 tetrahydrofuran/N,N-dimethylacetamide mixture. The click reaction of azido-functionalized IIR with acetylenic acids, which was carried out using the copper(I) bromide/N,N,N′,N″,N″-pentamethyldiethylenetriamine catalyst system in tetrahydrofuran, yielded carboxylated IIRs. The products were characterized by 1H NMR and FT-IR spectroscopy, and their molecular weight was determined by size exclusion chromatography analysis. The conversion to carboxylated groups reached up to 100% as determined by NMR spectroscopy but was highly dependent on the type of solvent and the amounts of catalysts and reactants used in the procedures.ARLANXEO Canada Inc.Natural Sciences and Engineering Research Council (NSERC) of Canad