1,475 research outputs found
A Shape Theorem for Riemannian First-Passage Percolation
Riemannian first-passage percolation (FPP) is a continuum model, with a
distance function arising from a random Riemannian metric in . Our main
result is a shape theorem for this model, which says that large balls under
this metric converge to a deterministic shape under rescaling. As a
consequence, we show that smooth random Riemannian metrics are geodesically
complete with probability one
Beauty Quark Fragmentation Into Strange B Mesons
Using the recent measurement of the total production rate for and
mesons in electron-positron annihilation to determine the strange quark
mass parameter in the fragmentation functions we
calculate the momentum distributions of the and mesons.Comment: 8 pages, 2 figures (not included but available upon request),
standard LaTeX file, Report # NUHEP-TH-94-1
Convergence of the all-time supremum of a L\'evy process in the heavy-traffic regime
In this paper we derive a technique of obtaining limit theorems for suprema
of L\'evy processes from their random walk counterparts. For each , let
be a sequence of independent and identically distributed
random variables and be a L\'evy processes such that
, and as . Let .
Then, under some mild assumptions, , for some random variable and some function
. We utilize this result to present a number of limit theorems
for suprema of L\'evy processes in the heavy-traffic regime
Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation
The use of fossil evidence to calibrate divergence time estimation has a long
history. More recently Bayesian MCMC has become the dominant method of
divergence time estimation and fossil evidence has been re-interpreted as the
specification of prior distributions on the divergence times of calibration
nodes. These so-called "soft calibrations" have become widely used but the
statistical properties of calibrated tree priors in a Bayesian setting has not
been carefully investigated. Here we clarify that calibration densities, such
as those defined in BEAST 1.5, do not represent the marginal prior distribution
of the calibration node. We illustrate this with a number of analytical results
on small trees. We also describe an alternative construction for a calibrated
Yule prior on trees that allows direct specification of the marginal prior
distribution of the calibrated divergence time, with or without the restriction
of monophyly. This method requires the computation of the Yule prior
conditional on the height of the divergence being calibrated. Unfortunately, a
practical solution for multiple calibrations remains elusive. Our results
suggest that direct estimation of the prior induced by specifying multiple
calibration densities should be a prerequisite of any divergence time dating
analysis
Mitochondrial Dna Replacement Versus Nuclear Dna Persistence
In this paper we consider two populations whose generations are not
overlapping and whose size is large. The number of males and females in both
populations is constant. Any generation is replaced by a new one and any
individual has two parents for what concerns nuclear DNA and a single one (the
mother) for what concerns mtDNA. Moreover, at any generation some individuals
migrate from the first population to the second.
In a finite random time , the mtDNA of the second population is completely
replaced by the mtDNA of the first. In the same time, the nuclear DNA is not
completely replaced and a fraction of the ancient nuclear DNA persists. We
compute both and . Since this study shows that complete replacement of
mtDNA in a population is compatible with the persistence of a large fraction of
nuclear DNA, it may have some relevance for the Out of Africa/Multiregional
debate in Paleoanthropology
Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization
We consider a family of models describing the evolution under selection of a
population whose dynamics can be related to the propagation of noisy traveling
waves. For one particular model, that we shall call the exponential model, the
properties of the traveling wave front can be calculated exactly, as well as
the statistics of the genealogy of the population. One striking result is that,
for this particular model, the genealogical trees have the same statistics as
the trees of replicas in the Parisi mean-field theory of spin glasses. We also
find that in the exponential model, the coalescence times along these trees
grow like the logarithm of the population size. A phenomenological picture of
the propagation of wave fronts that we introduced in a previous work, as well
as our numerical data, suggest that these statistics remain valid for a larger
class of models, while the coalescence times grow like the cube of the
logarithm of the population size.Comment: 26 page
Extremal spacings between eigenphases of random unitary matrices and their tensor products
Extremal spacings between eigenvalues of random unitary matrices of size N
pertaining to circular ensembles are investigated. Explicit probability
distributions for the minimal spacing for various ensembles are derived for N =
4. We study ensembles of tensor product of k random unitary matrices of size n
which describe independent evolution of a composite quantum system consisting
of k subsystems. In the asymptotic case, as the total dimension N = n^k becomes
large, the nearest neighbor distribution P(s) becomes Poissonian, but
statistics of extreme spacings P(s_min) and P(s_max) reveal certain deviations
from the Poissonian behavior
Parameter estimation in pair hidden Markov models
This paper deals with parameter estimation in pair hidden Markov models
(pair-HMMs). We first provide a rigorous formalism for these models and discuss
possible definitions of likelihoods. The model being biologically motivated,
some restrictions with respect to the full parameter space naturally occur.
Existence of two different Information divergence rates is established and
divergence property (namely positivity at values different from the true one)
is shown under additional assumptions. This yields consistency for the
parameter in parametrization schemes for which the divergence property holds.
Simulations illustrate different cases which are not covered by our results.Comment: corrected typo
On the Thermodynamic Limit in Random Resistors Networks
We study a random resistors network model on a euclidean geometry \bt{Z}^d.
We formulate the model in terms of a variational principle and show that, under
appropriate boundary conditions, the thermodynamic limit of the dissipation per
unit volume is finite almost surely and in the mean. Moreover, we show that for
a particular thermodynamic limit the result is also independent of the boundary
conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty',
revised version to appear in Journal of Physics
- …
