1,475 research outputs found

    A Shape Theorem for Riemannian First-Passage Percolation

    Full text link
    Riemannian first-passage percolation (FPP) is a continuum model, with a distance function arising from a random Riemannian metric in Rd\R^d. Our main result is a shape theorem for this model, which says that large balls under this metric converge to a deterministic shape under rescaling. As a consequence, we show that smooth random Riemannian metrics are geodesically complete with probability one

    Beauty Quark Fragmentation Into Strange B Mesons

    Full text link
    Using the recent measurement of the total production rate for BsB_s and BsB_s^* mesons in electron-positron annihilation to determine the strange quark mass parameter in the bˉBs,Bs\bar b\to B_s,\, B_s^* fragmentation functions we calculate the momentum distributions of the BsB_s and BsB_s^* mesons.Comment: 8 pages, 2 figures (not included but available upon request), standard LaTeX file, Report # NUHEP-TH-94-1

    Convergence of the all-time supremum of a L\'evy process in the heavy-traffic regime

    Get PDF
    In this paper we derive a technique of obtaining limit theorems for suprema of L\'evy processes from their random walk counterparts. For each a>0a>0, let {Yn(a):n1}\{Y^{(a)}_n:n\ge 1\} be a sequence of independent and identically distributed random variables and {Xt(a):t0}\{X^{(a)}_t:t\ge 0\} be a L\'evy processes such that X1(a)=dY1(a)X_1^{(a)}\stackrel{d}{=} Y_1^{(a)}, EX1(a)<0\mathbb E X_1^{(a)}<0 and EX1(a)0\mathbb E X_1^{(a)}\uparrow0 as a0a\downarrow0. Let Sn(a)=k=1nYk(a)S^{(a)}_n=\sum_{k=1}^n Y^{(a)}_k. Then, under some mild assumptions, Δ(a)maxn0Sn(a)dR    Δ(a)supt0Xt(a)dR\Delta(a)\max_{n\ge 0} S_n^{(a)}\stackrel{d}{\to} R\iff\Delta(a)\sup_{t\ge 0} X^{(a)}_t\stackrel{d}{\to} R, for some random variable RR and some function Δ()\Delta(\cdot). We utilize this result to present a number of limit theorems for suprema of L\'evy processes in the heavy-traffic regime

    Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation

    Get PDF
    The use of fossil evidence to calibrate divergence time estimation has a long history. More recently Bayesian MCMC has become the dominant method of divergence time estimation and fossil evidence has been re-interpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting has not been carefully investigated. Here we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis

    Mitochondrial Dna Replacement Versus Nuclear Dna Persistence

    Full text link
    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents for what concerns nuclear DNA and a single one (the mother) for what concerns mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time TT, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction FF of the ancient nuclear DNA persists. We compute both TT and FF. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the Out of Africa/Multiregional debate in Paleoanthropology

    Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization

    Full text link
    We consider a family of models describing the evolution under selection of a population whose dynamics can be related to the propagation of noisy traveling waves. For one particular model, that we shall call the exponential model, the properties of the traveling wave front can be calculated exactly, as well as the statistics of the genealogy of the population. One striking result is that, for this particular model, the genealogical trees have the same statistics as the trees of replicas in the Parisi mean-field theory of spin glasses. We also find that in the exponential model, the coalescence times along these trees grow like the logarithm of the population size. A phenomenological picture of the propagation of wave fronts that we introduced in a previous work, as well as our numerical data, suggest that these statistics remain valid for a larger class of models, while the coalescence times grow like the cube of the logarithm of the population size.Comment: 26 page

    Extremal spacings between eigenphases of random unitary matrices and their tensor products

    Full text link
    Extremal spacings between eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N = n^k becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s_min) and P(s_max) reveal certain deviations from the Poissonian behavior

    Parameter estimation in pair hidden Markov models

    Full text link
    This paper deals with parameter estimation in pair hidden Markov models (pair-HMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence property (namely positivity at values different from the true one) is shown under additional assumptions. This yields consistency for the parameter in parametrization schemes for which the divergence property holds. Simulations illustrate different cases which are not covered by our results.Comment: corrected typo

    On the Thermodynamic Limit in Random Resistors Networks

    Full text link
    We study a random resistors network model on a euclidean geometry \bt{Z}^d. We formulate the model in terms of a variational principle and show that, under appropriate boundary conditions, the thermodynamic limit of the dissipation per unit volume is finite almost surely and in the mean. Moreover, we show that for a particular thermodynamic limit the result is also independent of the boundary conditions.Comment: 14 pages, LaTeX IOP journal preprint style file `ioplppt.sty', revised version to appear in Journal of Physics
    corecore