3,108 research outputs found
Entangled-State Cycles of Atomic Collective-Spin States
We study quantum trajectories of collective atomic spin states of
effective two-level atoms driven with laser and cavity fields. We show that
interesting ``entangled-state cycles'' arise probabilistically when the (Raman)
transition rates between the two atomic levels are set equal. For odd (even)
, there are () possible cycles. During each cycle the
-qubit state switches, with each cavity photon emission, between the states
, where is a Dicke state in a rotated
collective basis. The quantum number (), which distinguishes the
particular cycle, is determined by the photon counting record and varies
randomly from one trajectory to the next. For even it is also possible,
under the same conditions, to prepare probabilistically (but in steady state)
the Dicke state , i.e., an -qubit state with excitations,
which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure
Large Quantum Superpositions and Interference of Massive Nanometer-Sized Objects
We propose a method to prepare and verify spatial quantum superpositions of a
nanometer-sized object separated by distances of the order of its size. This
method provides unprecedented bounds for objective collapse models of the wave
function by merging techniques and insights from cavity quantum optomechanics
and matter wave interferometry. An analysis and simulation of the experiment is
performed taking into account standard sources of decoherence. We provide an
operational parameter regime using present day and planned technology.Comment: 4 pages, 2 figures, to appear in PR
Single-photon optomechanics in the strong coupling regime
We give a theoretical description of a coherently driven opto-mechanical
system with a single added photon. The photon source is modeled as a cavity
which initially contains one photon and which is irreversibly coupled to the
opto-mechanical system. We show that the probability for the additional photon
to be emitted by the opto-mechanical cavity will exhibit oscillations under a
Lorentzian envelope, when the driven interaction with the mechanical resonator
is strong enough. Our scheme provides a feasible route towards quantum state
transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure
Experimental determination of a nonclassical Glauber-Sudarshan P function
A quantum state is nonclassical if its Glauber-Sudarshan P function fails to
be interpreted as a probability density. This quantity is often highly
singular, so that its reconstruction is a demanding task. Here we present the
experimental determination of a well-behaved P function showing negativities
for a single-photon-added thermal state. This is a direct visualization of the
original definition of nonclassicality. The method can be useful under
conditions for which many other signatures of nonclassicality would not
persist.Comment: 4 pages, 4 figure
Optical Quantum Computing
In 2001 all-optical quantum computing became feasible with the discovery that
scalable quantum computing is possible using only single photon sources, linear
optical elements, and single photon detectors. Although it was in principle
scalable, the massive resource overhead made the scheme practically daunting.
However, several simplifications were followed by proof-of-principle
demonstrations, and recent approaches based on cluster states or error encoding
have dramatically reduced this worrying resource overhead, making an
all-optical architecture a serious contender for the ultimate goal of a
large-scale quantum computer. Key challenges will be the realization of
high-efficiency sources of indistinguishable single photons, low-loss, scalable
optical circuits, high efficiency single photon detectors, and low-loss
interfacing of these components.Comment: 5 pages, 4 figure
Revisiting the Hanbury Brown-Twiss set-up for fractional statistics
The Hanbury Brown-Twiss experiment has proved to be an effective means of
probing statistics of particles. Here, in a set-up involving edge-state
quasiparticles in a fractional quantum Hall system, we show that a variant of
the experiment composed of two sources and two sinks can be used to unearth
fractional statistics. We find a clear cut signature of the statistics in the
equal-time current-current correlation function for quasiparticle currents
emerging from the two sources and collected at the sinks.Comment: 4 pages, 3 figure
mRNA-Expression of ERĪ±, ERĪ², and PR in Clonal Stem Cell Cultures Obtained from Human Endometrial Biopsies
Background. Proliferation and differentiation of the endometrium are regulated by estrogen and progesterone. The enormous regenerative capacity of the endometrium is thought to be based on the activity of adult stem cells. However, information on endocrine regulatory mechanisms in human endometrial stem cells is scarce. In the present study, we investigated the expression of ERĪ±, ERĪ², and PR in clonal cultures of human endometrial stem cells derived from transcervical biopsies. Methods. Endometrial tissue of 11 patients was obtained by transcervical biopsy. Stromal cell suspensions were plated at clonal density and incubated for 15 days. Expression of ERĪ±, ERĪ² and PR was determined by qPCR prior to and after one cloning round, and normalized to 18āS rRNA expression. Results. Expression of ERĪ± and ERĪ² was downregulated by 64% and 89%, respectively (P = 0.002 and P < 0.001). In contrast, PR was not significantly downregulated, due to a more heterogenous expression pattern. Conclusions. Culture of human endometrial stroma cells results in a downregulation of ERĪ± and ERĪ², while expression of PR remained unchanged in our patient collective. These results support the hypothesis that stem cells may not be subject to direct stimulation by sex steroids, but rather by paracrine mechanisms within the stem cell niche
Quantum teleportation and entanglement swapping with linear optics logic gates
We report on the usage of a linear optics phase gate for distinguishing all
four Bell states simultaneously in a quantum teleportation and entanglement
swapping protocol. This is demonstrated by full state tomography of the one and
two qubit output states of the two protocols, yielding average state fidelities
of about 0.83 and 0.77, respectively. In addition, the performance of the
teleportation channel is characterised by quantum process tomography. The non
classical properties of the entanglement swapping output states are further
confirmed by the violation of a CHSH-type Bell inequality of 2.14 on average.Comment: 11 pages, 3 figure
- ā¦