62 research outputs found

    Combining the Δ--self-consistent-field and gw methods for predicting core electron binding energies in periodic solids

    Get PDF
    For the computational prediction of core electron binding energies in solids, two distinct kinds of modeling strategies have been pursued: the Δ-Self-Consistent-Field method based on density functional theory (DFT), and the GW method. In this study, we examine the formal relationship between these two approaches and establish a link between them. The link arises from the equivalence, in DFT, between the total energy difference result for the first ionization energy, and the eigenvalue of the highest occupied state, in the limit of infinite supercell size. This link allows us to introduce a new formalism, which highlights how in DFT─even if the total energy difference method is used to calculate core electron binding energies─the accuracy of the results still implicitly depends on the accuracy of the eigenvalue at the valence band maximum in insulators, or at the Fermi level in metals. We examine whether incorporating a quasiparticle correction for this eigenvalue from GW theory improves the accuracy of the calculated core electron binding energies, and find that the inclusion of vertex corrections is required for achieving quantitative agreement with experiment

    Effects of nitridation on SiC/SiO2 structures studied by hard X-ray photoelectron spectroscopy

    Get PDF
    SiC is set to enable a new era in power electronics impacting a wide range of energy technologies, from electric vehicles to renewable energy. Its physical characteristics outperform silicon in many aspects, including band gap, breakdown field, and thermal conductivity. The main challenge for further development of SiC-based power semiconductor devices is the quality of the interface between SiC and its native dielectric SiO2_2. High temperature nitridation processes can improve the interface quality and ultimately the device performance immensely, but the underlying chemical processes are still poorly understood. Here, we present an energy-dependent hard X-ray photoelectron spectroscopy (HAXPES) study probing non-destructively SiC and SiO2_2 and their interface in device stacks treated in varying atmospheres. We successfully combine laboratory- and synchrotron-based HAXPES to provide unique insights into the chemistry of interface defects and their passivation through nitridation processes

    Lifetime effects and satellites in the photoelectron spectrum of tungsten metal

    Get PDF
    Tungsten is an important and versatile transition metal and has a firm place at the heart of many technologies. A popular experimental technique for the characterisation of tungsten and tungsten-based compounds is X-ray photoelectron spectroscopy (XPS), which enables the assessment of chemical states and electronic structure through the collection of core level and valence band spectra. However, in the case of metallic tungsten, open questions remain regarding the origin, nature, and position of satellite features that are prominent in the photoelectron spectrum. These satellites are a fingerprint of the electronic structure of the material and have not been thoroughly investigated, at times leading to their misinterpretation. The present work combines high-resolution soft and hard X-ray photoelectron spectroscopy (SXPS and HAXPES) with reflection electron energy loss spectroscopy (REELS) and a multi-tiered ab-initio theoretical approach, including density functional theory (DFT) and many-body perturbation theory (G0W0 and GW+C), to disentangle the complex set of experimentally observed satellite features attributed to the generation of plasmons and interband transitions. This combined experiment-theory strategy is able to uncover previously undocumented satellite features, improving our understanding of their direct relationship to tungsten's electronic structure. Furthermore, it lays the groundwork for future studies into tungsten based mixed-metal systems and holds promise for the re-assessment of the photoelectron spectra of other transition and post-transition metals, where similar questions regarding satellite features remain

    Captured by Evil: The Idea of Corruption in Law

    Get PDF
    Corruption is one of the most powerful words in the English language. When it comes to the treatment of corruption by law, however, corruption is a troubled concept. With increasing recognition of the costs of corruption for economic development, democratic governance, international aid programs, and other world goals, attempts to articulate what this destructive force is have led to an avalanche of theoretical writing. In the last fifteen years, corruption has been variously defined as the violation of law, a public servant\u27s breach of public duty, an agent\u27s betrayal of a principal\u27s interests, the pursuit of secrecy, the denial of equality in political influence, and other ways. In the end, however, all of these efforts fall short. Corruption is more than law-breaking: it is more than breaching public duties. To say that A is a thief or that A has breached his duty is not to say that A is corrupt. The latter is far more powerful, far more emotional, far more essential than the others. It is more than secrecy, or the denial of equal opportunity. It is a searing indictment, somehow, not only of A\u27s act but of A\u27s character. It is a statement not only of what A has done, but of what A has become. Corruption is, I argue, a far more powerful idea than these existing legal understandings have articulated: it is the idea of capture by evil, the possession of the individual by evil, in law. Just as we once believed in corruption of the blood in American law, which decreed that offspring of those who had committed crimes were believed to be irrevocably tainted by their parents\u27 depravity, so we still retain - through the idea of corruption - the belief that individual evil extends beyond acts of wrongdoing, or the denial of equal opportunity, or breach of the public trust. It is this idea of corruption, I argue - the idea of capture by evil - that, although unarticulated, drives our understandings of corruption in law. It drives our understanding of corrupt judges, who, once corrupt, we believe will act so in every case. It drives our understanding of campaign finance reform, where we fear deep corruption of the process from the occurrence of corrupt acts. It drives our understanding of corruption as a systemic effect and systemic influence, which presents institutional dangers that are greater than other crimes, and that requires purgation rather than simple law enforcement. This Article explores this deeper understanding of corruption, its impacts in areas such as judicial corruption and campaign finance reform, and its implications for the principle of the rule of law

    Effects of nitridation on SiC/SiO(2)structures studied by hard X-ray photoelectron spectroscopy

    Get PDF
    SiC is set to enable a new era in power electronics impacting a wide range of energy technologies, from electric vehicles to renewable energy. Its physical characteristics outperform silicon in many aspects, including band gap, breakdown field, and thermal conductivity. The main challenge for further development of SiC-based power semiconductor devices is the quality of the interface between SiC and its native dielectric SiO2. High temperature nitridation processes can improve the interface quality and ultimately the device performance immensely, but the underlying chemical processes are still poorly understood. Here, we present an energy-dependent hard x-ray photoelectron spectroscopy (HAXPES) study probing non-destructively SiC and SiO2 and their interface in device stacks treated in varying atmospheres. We successfully combine laboratory- and synchrotron-based HAXPES to provide unique insights into the chemistry of interface defects and their passivation through nitridation processes
    • …
    corecore