341 research outputs found

    Proper acceleration, geometric tachyon and dynamics of a fundamental string near Dpp branes

    Full text link
    We present a detailed analysis of our recent observation that the origin of the geometric tachyon, which arises when a Dpp-brane propagates in the vicinity of a stack of coincident NS5-branes, is due to the proper acceleration generated by the background dilaton field. We show that when a fundamental string (F-string), described by the Nambu-Goto action, is moving in the background of a stack of coincident Dpp-branes, the geometric tachyon mode can also appear since the overall conformal mode of the induced metric for the string can act as a source for proper acceleration. We also studied the detailed dynamics of the F-string as well as the instability by mapping the Nambu-Goto action of the F-string to the tachyon effective action of the non-BPS D-string. We qualitatively argue that the condensation of the geometric tachyon is responsible for the (F,Dpp) bound state formation.Comment: 26 pages, v2: added references, v3: one ref. updated, to appear in Class. and Quant. Gravit

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Recognition of Face Identity and Emotion in Expressive Specific Language Impairment

    Get PDF
    Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base

    Model-based prediction of human hair color using DNA variants

    Get PDF
    Predicting complex human phenotypes from genotypes is the central concept of widely advocated personalized medicine, but so far has rarely led to high accuracies limiting practical applications. One notable exception, although less relevant for medical but important for forensic purposes, is human eye color, for which it has been recently demonstrated that highly accurate prediction is feasible from a small number of DNA variants. Here, we demonstrate that human hair color is predictable from DNA variants with similarly high accuracies. We analyzed in Polish Europeans with single-observer hair color grading 45 single nucleotide polymorphisms (SNPs) from 12 genes previously associated with human hair color variation. We found that a model based on a subset of 13 single or compound genetic markers from 11 genes predicted red hair color with over 0.9, black hair color with almost 0.9, as well as blond, and brown hair color with over 0.8 prevalence-adjusted accuracy expressed by the area under the receiver characteristic operating curves (AUC). The identified genetic predictors also differentiate reasonably well between similar hair colors, such as between red and blond-red, as well as between blond and dark-blond, highlighting the value of the identified DNA variants for accurate hair color prediction

    Positive energy unitary irreducible representations of D=6 conformal supersymmetry

    Get PDF
    We give a constructive classification of the positive energy (lowest weight) unitary irreducible representations of the D=6 superconformal algebras osp(8*/2N). Our results confirm all but one of the conjectures of Minwalla (for N=1,2) on this classification. Our main tool is the explicit construction of the norms of the states that has to be checked for positivity. We give also the reduction of the exceptional UIRs.Comment: 27 pages, TeX with harvmac, amssym.def, amssym.tex; v.2: minor corrections and references added; v.3: minor corrections; v.4: to appear in J. Phys.

    Prenatal treatment path for angelman syndrome and other neurodevelopmental disorders

    Get PDF
    Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or deletion of the maternally inherited UBE3A allele. These pathogenic mutations lead to loss of maternal UBE3A expression in neurons. Antisense oligonucleotides and gene therapies are in development, which activate the intact but epigenetically silenced paternal UBE3A allele. Preclinical studies indicate that treating during the prenatal period could greatly reduce the severity of symptoms or prevent AS from developing. Genetic tests can detect the chromosome 15q11-q13 deletion that is the most common cause of AS. New, highly sensitive noninvasive prenatal tests that take advantage of single-cell genome sequencing technologies are expected to enter the clinic in the coming years and make early genetic diagnosis of AS more common. Efforts are needed to identify fetuses and newborns with maternal 15q11-q13 deletions and to phenotype these babies relative to neurotypical controls. Clinical and parent observations suggest AS symptoms are detectable in infants, including reports of problems with feeding and motor function. Quantitative phenotypes in the 0- to 1-year age range will permit a more rapid assessment of efficacy when future treatments are administered prenatally or shortly after birth. Although prenatal therapies are currently not available for AS, prenatal testing combined with prenatal treatment has the potential to revolutionize how clinicians detect and treat babies before they are symptomatic. This pioneering prenatal treatment path for AS will lay the foundation for treating other syndromic neurodevelopmental disorders. Autism Res 2020, 13: 11–17. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay summary: Prenatal treatment could benefit expectant parents whose babies test positive for the chromosome microdeletion that causes Angelman syndrome (AS). Prenatal treatment is predicted to have better outcomes than treating after symptoms develop and may even prevent AS altogether. This approach could generally be applied to the treatment of other syndromic neurodevelopmental disorders

    SL(2,R)/U(1) Supercoset and Elliptic Genera of Non-compact Calabi-Yau Manifolds

    Full text link
    We first discuss the relationship between the SL(2;R)/U(1) supercoset and N=2 Liouville theory and make a precise correspondence between their representations. We shall show that the discrete unitary representations of SL(2;R)/U(1) theory correspond exactly to those massless representations of N=2 Liouville theory which are closed under modular transformations and studied in our previous work hep-th/0311141. It is known that toroidal partition functions of SL(2;R)/U(1) theory (2D Black Hole) contain two parts, continuous and discrete representations. The contribution of continuous representations is proportional to the space-time volume and is divergent in the infinite-volume limit while the part of discrete representations is volume-independent. In order to see clearly the contribution of discrete representations we consider elliptic genus which projects out the contributions of continuous representations: making use of the SL(2;R)/U(1), we compute elliptic genera for various non-compact space-times such as the conifold, ALE spaces, Calabi-Yau 3-folds with A_n singularities etc. We find that these elliptic genera in general have a complex modular property and are not Jacobi forms as opposed to the cases of compact Calabi-Yau manifolds.Comment: 39 pages, no figure; v2 references added, minor corrections; v3 typos corrected, to appear in JHEP; v4 typos corrected in eqs. (3.22) and (3.44

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Search for gravitational-wave bursts in LIGO data from the fourth science run

    Get PDF
    The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 per day (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages, submitted to Classical and Quantum Gravit
    corecore