523 research outputs found

    Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins

    No full text
    Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides). A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out. © 2018 Imhoff, Rahn, Künzel and Neulinger

    Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning

    Get PDF
    There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of meta-algorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the Conditional Average Treatment Effect (CATE) function. Meta-algorithms build on base algorithms---such as Random Forests (RF), Bayesian Additive Regression Trees (BART) or neural networks---to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a new meta-algorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other, and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the meta-learners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our new X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods

    1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 031114 (2015) and may be found at https://doi.org/10.1063/1.4906451.Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeEC/FP7/EU/264687/Postgraduate Research on Photonics as an Enabling Technology/PROPHE

    Draft genome sequence of strain R_RK_3, an iron-depositing isolate of the genus Rhodomicrobium, isolated from a dewatering well of an opencast mine

    Get PDF
    Rhodomicrobium sp. strain R_RK_3 is an iron-depositing bacterium from which we report the draft genome. This strain was isolated from ochrous depositions of a mining well pump in Germany. The Illumina NextSeq technique was used to sequence the genome of the strain. © 2017 Braun et al

    Selection of validated hypervariable regions is crucial in 16S-based microbiota studies of the female genital tract

    Get PDF
    Next-generation sequencing-based methods are extensively applied in studies of the human microbiota using partial 16 S rRNA gene amplicons. However, they carry drawbacks that are critical to consider when interpreting results, including differences in outcome based on the hypervariable region(s) used. Here, we show that primers spanning the V3/V4 region identify a greater number of taxa in the vaginal microbiota than those spanning the V1/V2 region. In particular, taxa such as Gardnerella vaginalis, Bifidobacterium bifidum and Chlamydia trachomatis, all species that influence vaginal health and disease, are not represented in V1/V2-based community profiles. Accordingly, missing or underestimating the frequency of these species overestimates the abundance of other taxa and fails to correctly assess the bacterial diversity in the urogenital tract. We elaborate that covering these taxa using the V3/V4 region leads to profound changes in the assignment of community state types. Altogether, we show that the choice of primers used for studying the vaginal microbiota has deep implications on the biological evaluation of the results

    Genome-wide mapping of gene–microbiota interactions in susceptibility to autoimmune skin blistering

    Get PDF
    Susceptibility to chronic inflammatory diseases is determined by immunogenetic and environmental risk factors. Resident microbial communities often differ between healthy and diseased states, but whether these differences are of primary aetiological importance or secondary to the altered inflammatory environment remains largely unknown. Here we provide evidence for host gene–microbiota interactions contributing to disease risk in a mouse model of epidermolysis bullosa acquisita, an autoantibody-induced inflammatory skin disease. Using an advanced intercross, we identify genetic loci contributing to skin microbiota variability, susceptibility to skin blistering and their overlap. Furthermore, by treating bacterial species abundances as covariates with disease we reveal a novel disease locus. The majority of the identified covariate taxa are characterized by reduced abundance being associated with increased disease risk, providing evidence of a primary role in protection from disease. Further characterization of these putative probiotic species or species assemblages offers promising potential for preventative and therapeutic treatment development

    Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice

    No full text
    Understanding the origins of gut microbial community structure is critical for the identification and interpretation of potential fitnessrelated traits for the host. The presence of community clusters characterized by differences in the abundance of signature taxa, referred to as enterotypes, is a debated concept first reported in humans and later extended to other mammalian hosts. In this study, we provide a thorough assessment of their existence in wild house mice using a panel of evaluation criteria.We identify support for two clusters that are compositionally similar to clusters identified in humans, chimpanzees, and laboratory mice, characterized by differences in Bacteroides, Robinsoniella, and unclassified genera belonging to the family Lachnospiraceae. To further evaluate these clusters, we (i) monitored community changes associated with moving mice from the natural to a laboratory environment, (ii) performed functional metagenomic sequencing, and (iii) subjected wild-caught samples to stable isotope analysis to reconstruct dietary patterns. This process reveals differences in the proportions of genes involved in carbohydrate versus protein metabolism in the functional metagenome, as well as differences in plant- versus meat-derived food sources between clusters. In conjunction with wild-caught mice quickly changing their enterotype classification upon transfer to a standard laboratory chow diet, these results provide strong evidence that dietary history contributes to the presence of enterotype-like clustering in wild mice

    Analysis of coupled heat and moisture transfer in masonry structures

    Full text link
    Evaluation of effective or macroscopic coefficients of thermal conductivity under coupled heat and moisture transfer is presented. The paper first gives a detailed summary on the solution of a simple steady state heat conduction problem with an emphasis on various types of boundary conditions applied to the representative volume element -- a periodic unit cell. Since the results essentially suggest no superiority of any type of boundary conditions, the paper proceeds with the coupled nonlinear heat and moisture problem subjecting the selected representative volume element to the prescribed macroscopically uniform heat flux. This allows for a direct use of the academic or commercially available codes. Here, the presented results are derived with the help of the SIFEL (SIimple Finite Elements) system.Comment: 23 pages, 11 figure

    Phylogeny of anoxygenic photosynthesis based on sequences of photosynthetic reaction center proteins and a key enzyme in bacteriochlorophyll biosynthesis, the chlorophyllide reductase

    No full text
    Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree). Despite some significant differences, large parts were congruent between the 16S rRNA phylogeny and photosynthesis proteins. The phylogenetic relations demonstrated that bacteriochlorophyll biosynthesis had evolved in ancestors of phototrophic green bacteria much earlier as compared to phototrophic purple bacteria and that multiple events independently formed different lineages of aerobic phototrophic purple bacteria, many of which have very ancient roots. The Rhodobacterales clearly represented the youngest group, which was separated from other Proteobacteria by a large evolutionary gap
    corecore