2,553 research outputs found

    Composite Inflation from Super Yang-Mills, Orientifold and One-Flavor QCD

    Full text link
    Recent investigations have shown that inflation can be driven by four-dimensional strongly interacting theories non-minimally coupled to gravity. We explore this paradigm further by considering composite inflation driven by orientifold field theories. The advantage of using these theories resides in the fact that at large number of colors they feature certain super Yang-Mills properties. In particular we can use for inflation the bosonic part of the Veneziano-Yankielowicz effective theory. Furthermore, we include the 1/N as well as fermion mass corrections at the effective Lagrangian level allowing us to explore the effects of these corrections on the inflationary slow-roll parameters. Additionally the orientifold field theory with fermionic matter transforming according to the two-index antisymmetric representation for three colors is QCD. Therefore this model can be interpreted as a new non-minimally coupled QCD theory of inflation. The scale of composite inflation, for all the models presented here, is of the order of 101610^{16} GeV. Unitarity studies of the inflaton scattering suggest that the cutoff of the model is at the Planck scale.Comment: 17 page

    Marginally Deformed Starobinsky Gravity

    Get PDF
    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form R2(1α)R^{2(1 -\alpha)}, with RR the Ricci scalar and α\alpha a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes. We also suggest natural microscopic (non) gravitational sources of these corrections and demonstrate that they lead generally to a nonzero and positive α\alpha. Furthermore we argue, that within this framework, the tensor modes probe theories of grand unification with a large scalar field content.Comment: 5 pages, 1 figure, 2 column

    Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

    Full text link
    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Earth mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.Comment: Accepted to MNRA

    Deep far infrared ISOPHOT survey in "Selected Area 57", I. Observations and source counts

    Get PDF
    We present here the results of a deep survey in a 0.4 sq.deg. blank field in Selected Area 57 conducted with the ISOPHOT instrument aboard ESAs Infrared Space Observatory (ISO) at both 60 um and 90 um. The resulting sky maps have a spatial resolution of 15 x 23 sq.arcsec. per pixel which is much higher than the 90 x 90 sq.arcsec. pixels of the IRAS All Sky Survey. We describe the main instrumental effects encountered in our data, outline our data reduction and analysis scheme and present astrometry and photometry of the detected point sources. With a formal signal to noise ratio of 6.75 we have source detection limits of 90 mJy at 60 um and 50 mJy at 90 um. To these limits we find cumulated number densities of 5+-3.5 per sq.deg. at 60 um and 14.8+-5.0 per sq.deg.at 90 um. These number densities of sources are found to be lower than previously reported results from ISO but the data do not allow us to discriminate between no-evolution scenarios and various evolutionary models.Comment: 15 pages, 11 figures, accepted by Astronomy & Astrophysic

    Waxing Monkey Frogs in the Wild

    Get PDF
    This is where the abstract of this record would appear. This is only demonstration data

    Editorial

    Get PDF

    Form and width of spectral line of Josephson Flux-Flow oscillator

    Full text link
    The behavior of a Josephson flux-flow oscillator in the presence of both bias current and magnetic field fluctuations has been studied. To derive the equation for slow phase dynamics in the limit of small noise intensity the Poincare method has been used. Both the form of spectral line and the linewidth of the flux-flow oscillator have been derived exactly on the basis of technique presented in the book of Malakhov, known limiting cases are considered, limits of their applicability are discussed and appearance of excess noise is explained. Good coincidence of theoretical description with experimental results has been demonstrated.Comment: 10 pages, 5 figure

    Time-series Spectroscopy of Pulsating sdB stars III: Line Indices of PG1605+072

    Get PDF
    We present the detection and analysis of line index variations in the pulsating sdB star PG 1605+072. We have found a strong dependence of line index amplitude on Balmer line order, with high-order Balmer line amplitudes up to 10 times larger than H-beta. Using a simple model, we have found that the line index may not only be dependent on temperature, as is usually assumed for oscillating stars, but also on surface gravity. This information will provide another set of observables that can be used for mode identification of sdBs.Comment: 8 pages, 9 figures, to appear in MNRAS. A high resolution version of Figure 3 can be found at http://www.sternwarte.uni-erlangen.de/~ai25/MC852-fig3.ep
    corecore