37 research outputs found

    Collagen type III alpha I is a gastro-oesophageal reflux disease susceptibility gene and a male risk factor for hiatus hernia

    Get PDF
    Published Online First 26 April 2009Background and objectives: Gastro-oesophageal reflux disease (GORD) is a common gastrointestinal disorder with a genetic component. Our aim was to identify genetic factors associated with GORD. Patients and methods: Four separate patient cohorts were analysed using a step-wise approach. (1) Whole genome linkage analysis was performed in 36 families. (2) Candidate genes were tested for GORD association in a trio cohort. (3) Genetic association was replicated in a case–control cohort. We also investigated genetic association to hiatus hernia (HH). (4) Protein expression was analysed in oesophageal biopsies. Results: A region on chromosome 2, containing collagen type III alpha 1 (COL3A1), was identified (LOD = 3.3) in families with dominant transmission of GORD, stratified for hiatus hernia (HH). COL3A1 showed significant association with GORD in an independent paediatric trio cohort (pcorr = 0.003). The association was male specific (pcorr = 0.018). The COL3A1 association was replicated in an independent adult case control cohort (pcorr = 0.022). Moreover, male specific association to HH (pcorr = 0.019) was found for a SNP not associated to GORD. Collagen type III protein was more abundant in oesophageal biopsies from male patients with GORD (p = 0.03). Conclusion: COL3A1 is a disease-associated gene in both paediatric and adult GORD. Furthermore, we show that COL3A1 is genetically associated with HH in adult males. The GORD- and HH-associated alleles are different, indicating two separate mechanisms leading to disease. Our data provides new insight into GORD aetiology, identifying a connective tissue component and indicating a tissue remodelling mechanism in GORD. Our results implicate gender differences in the genetic risk for both for GORD and HH.B Åsling, J Jirholt, P Hammond, M Knutsson, A Walentinsson, G Davidson, L Agreus, A Lehmann, M Lagerström-Ferme

    4-aminobutyrate aminotrasferase (ABAT): genetic and pharmacological evidence for an involvement in gastro esophageal reflux disease

    Get PDF
    Extent: 9p.Gastro-esophageal reflux disease (GERD) is partly caused by genetic factors. The underlying susceptibility genes are currently unknown, with the exception of COL3A1. We used three independent GERD patient cohorts to identify GERD susceptibility genes. Thirty-six families, demonstrating dominant transmission of GERD were subjected to whole genome microsatellite genotyping and linkage analysis. Five linked regions were identified. Two families shared a linked region (LOD 3.9 and 2.0) on chromosome 16. We used two additional independent GERD patient cohorts, one consisting of 219 trios (affected child with parents) and the other an adult GERD case control cohort consisting of 256 cases and 485 controls, to validate individual genes in the linked region through association analysis. Sixty six single nucleotide polymorphism (SNP) markers distributed over the nine genes present in the linked region were genotyped in the independent GERD trio cohort. Transmission disequilibrium test analysis followed by multiple testing adjustments revealed a significant genetic association for one SNP located in an intron of the gene 4-aminobutyrate aminotransferase (ABAT) (Padj = 0.027). This association did not replicate in the adult case-control cohort, possibly due to the differences in ethnicity between the cohorts. Finally, using the selective ABAT inhibitor vigabatrin (c-vinyl GABA) in a dog study, we were able to show a reduction of transient lower esophageal sphincter relaxations (TLESRs) by 57.3611.4 % (p = 0.007) and the reflux events from 3.160.4 to 0.860.4 (p = 0.007). Our results demonstrate the direct involvement of ABAT in pathways affecting lower esophageal sphincter (LES) control and identifies ABAT as a genetic risk factor for GERD.Johan Jirholt, Bengt Åsling, Paul Hammond, Geoffrey Davidson, Mikael Knutsson, Anna Walentinsson, Jörgen M. Jensen, Anders Lehmann, Lars Agreus and Maria Lagerström-Ferme

    Novel genetic marker for dilated end stage oesophagus and oesophageal adenocarcinoma risk? Authors' response

    No full text
    B Åsling, J Jirholt, P Hammond, M Knutsson, A Walentinsson, G Davidson, L Agreus, A Lehmann, M Lagerström-Ferme

    Identification of epistasis through a partial advanced intercross reveals three arthritis loci within the Cia5 QTL in mice.

    No full text
    Identification of genes controlling complex diseases has proven to be difficult; however, animal models may pave the way to determine how low penetrant genes interact to promote disease development. We have dissected the Cia5/Eae3 susceptibility locus on mouse chromosome 3 previously identified to control disease in experimental models of multiple sclerosis and rheumatoid arthritis. Congenic strains showed significant but small effects on severity of both diseases. To improve the penetrance, we have now used a new strategy that defines the genetic interactions. The QTL interacted with another locus on chromosome 15 and a partial advanced intercross breeding of the two congenic strains for eight generations accumulated enough statistical power to identify interactions with several loci on chromosome 15. Thereby, three separate loci within the original QTL could be identified; Cia5 affected the onset of arthritis by an additive interaction with Cia31 on chromosome 15, whereas the Cia21 and Cia22 affected severity during the chronic phase of the disease through an epistatic interaction with Cia32 on chromosome 15. The definition of genetic interactions was a prerequisite to dissect the Cia5 QTL and we suggest the partial advanced intercross strategy to be helpful also for dissecting other QTL controlling complex phenotypes

    Evaluation of macrophage-specific promoters using lentiviral delivery in mice.

    No full text
    In gene therapy, tissue-specific promoters are useful tools to direct transgene expression and improve efficiency and safety. Macrophage-specific promoters (MSPs) have previously been published using different delivery systems. In this study, we evaluated five different MSPs fused with green fluorescent protein (GFP) to delineate the one with highest specificity using lentiviral delivery. We compared three variants of the CD68 promoter (full length, the 343-bp proximal part and the 150-bp proximal part) and two variants (in forward and reverse orientation) of a previously characterized synthetic promoter derived from elements of transcription factor genes. We transduced a number of cell lines and primary cells in vitro. In addition, hematopoietic stem cells were transduced with MSPs and transferred into lethally irradiated recipient mice. Fluorescence activated cell sorting analysis was performed to determine the GFP expression in different cell populations both in vitro and in vivo. We showed that MSPs can efficiently be used for lentiviral gene delivery and that the 150-bp proximal part of the CD68 promoter provides primarily macrophage-specific expression of GFP. We propose that this is the best currently available MSP to use for directing transgene expression to macrophage populations in vivo using lentiviral vectors

    Suggestive evidence for association of human chromosome 18q12-q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases.

    No full text
    Some immune system disorders, such as type 1 diabetes, multiple sclerosis (MS), and rheumatoid arthritis (RA), share common features: the presence of autoantibodies and self-reactive T-cells, and a genetic association with the major histocompatibility complex. We have previously published evidence, from 1,708 families, for linkage and association of a haplotype of three markers in the D18S487 region of chromosome 18q21 with type 1 diabetes. Here, the three markers were typed in an independent set of 627 families and, although there was evidence for linkage (maximum logarithm of odds score [MLS] = 1.2; P = 0.02), no association was detected. Further linkage analysis revealed suggestive evidence for linkage of chromosome 18q21 to type 1 diabetes in 882 multiplex families (MLS = 2.2; lambdas = 1.2; P = 0.001), and by meta-analysis the orthologous region (also on chromosome 18) is linked to diabetes in rodents (P = 9 x 10(-4)). By meta-analysis, both human chromosome 18q12-q21 and the rodent orthologous region show positive evidence for linkage to an autoimmune phenotype (P = 0.004 and 2 x 10(-8), respectively, empirical P = 0.01 and 2 x 10(-4), respectively). In the diabetes-linked region of chromosome 18q12-q21, a candidate gene, deleted in colorectal carcinoma (DCC), was tested for association with human autoimmunity in 3,380 families with type 1 diabetes, MS, and RA. A haplotype ("2-10") of two newly characterized microsatellite markers within DCC showed evidence for association with autoimmunity (P = 5 x 10(-6)). Collectively, these data suggest that a locus (or loci) exists on human chromosome 18q12-q21 that influences multiple autoimmune diseases and that this association might be conserved between species

    Suggestive evidence for association of human chromosome 18q12-q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases.

    No full text
    Some immune system disorders, such as type 1 diabetes, multiple sclerosis (MS), and rheumatoid arthritis (RA), share common features: the presence of autoantibodies and self-reactive T-cells, and a genetic association with the major histocompatibility complex. We have previously published evidence, from 1,708 families, for linkage and association of a haplotype of three markers in the D18S487 region of chromosome 18q21 with type 1 diabetes. Here, the three markers were typed in an independent set of 627 families and, although there was evidence for linkage (maximum logarithm of odds score [MLS] = 1.2; P = 0.02), no association was detected. Further linkage analysis revealed suggestive evidence for linkage of chromosome 18q21 to type 1 diabetes in 882 multiplex families (MLS = 2.2; lambdas = 1.2; P = 0.001), and by meta-analysis the orthologous region (also on chromosome 18) is linked to diabetes in rodents (P = 9 x 10(-4)). By meta-analysis, both human chromosome 18q12-q21 and the rodent orthologous region show positive evidence for linkage to an autoimmune phenotype (P = 0.004 and 2 x 10(-8), respectively, empirical P = 0.01 and 2 x 10(-4), respectively). In the diabetes-linked region of chromosome 18q12-q21, a candidate gene, deleted in colorectal carcinoma (DCC), was tested for association with human autoimmunity in 3,380 families with type 1 diabetes, MS, and RA. A haplotype ("2-10") of two newly characterized microsatellite markers within DCC showed evidence for association with autoimmunity (P = 5 x 10(-6)). Collectively, these data suggest that a locus (or loci) exists on human chromosome 18q12-q21 that influences multiple autoimmune diseases and that this association might be conserved between species
    corecore