1,653 research outputs found

    Computational Difficulty of Global Variations in the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) approach is arguably the most successful method to numerically find ground states of quantum spin chains. It amounts to iteratively locally optimizing matrix-product states, aiming at better and better approximating the true ground state. To date, both a proof of convergence to the globally best approximation and an assessment of its complexity are lacking. Here we establish a result on the computational complexity of an approximation with matrix-product states: The surprising result is that when one globally optimizes over several sites of local Hamiltonians, avoiding local optima, one encounters in the worst case a computationally difficult NP-hard problem (hard even in approximation). The proof exploits a novel way of relating it to binary quadratic programming. We discuss intriguing ramifications on the difficulty of describing quantum many-body systems.Comment: 5 pages, 1 figure, RevTeX, final versio

    Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model

    Full text link
    Motivated by applications such as viral marketing, the problem of influence maximization (IM) has been extensively studied in the literature. The goal is to select a small number of users to adopt an item such that it results in a large cascade of adoptions by others. Existing works have three key limitations. (1) They do not account for economic considerations of a user in buying/adopting items. (2) Most studies on multiple items focus on competition, with complementary items receiving limited attention. (3) For the network owner, maximizing social welfare is important to ensure customer loyalty, which is not addressed in prior work in the IM literature. In this paper, we address all three limitations and propose a novel model called UIC that combines utility-driven item adoption with influence propagation over networks. Focusing on the mutually complementary setting, we formulate the problem of social welfare maximization in this novel setting. We show that while the objective function is neither submodular nor supermodular, surprisingly a simple greedy allocation algorithm achieves a factor of (11/eϵ)(1-1/e-\epsilon) of the optimum expected social welfare. We develop \textsf{bundleGRD}, a scalable version of this approximation algorithm, and demonstrate, with comprehensive experiments on real and synthetic datasets, that it significantly outperforms all baselines.Comment: 33 page

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    Sampling and Representation Complexity of Revenue Maximization

    Full text link
    We consider (approximate) revenue maximization in auctions where the distribution on input valuations is given via "black box" access to samples from the distribution. We observe that the number of samples required -- the sample complexity -- is tightly related to the representation complexity of an approximately revenue-maximizing auction. Our main results are upper bounds and an exponential lower bound on these complexities

    Parallel Repetition of Entangled Games with Exponential Decay via the Superposed Information Cost

    Get PDF
    In a two-player game, two cooperating but non communicating players, Alice and Bob, receive inputs taken from a probability distribution. Each of them produces an output and they win the game if they satisfy some predicate on their inputs/outputs. The entangled value ω(G)\omega^*(G) of a game GG is the maximum probability that Alice and Bob can win the game if they are allowed to share an entangled state prior to receiving their inputs. The nn-fold parallel repetition GnG^n of GG consists of nn instances of GG where the players receive all the inputs at the same time and produce all the outputs at the same time. They win GnG^n if they win each instance of GG. In this paper we show that for any game GG such that ω(G)=1ε<1\omega^*(G) = 1 - \varepsilon < 1, ω(Gn)\omega^*(G^n) decreases exponentially in nn. First, for any game GG on the uniform distribution, we show that ω(Gn)=(1ε2)Ω(nlog(IO)log(ε))\omega^*(G^n) = (1 - \varepsilon^2)^{\Omega\left(\frac{n}{\log(|I||O|)} - |\log(\varepsilon)|\right)}, where I|I| and O|O| are the sizes of the input and output sets. From this result, we show that for any entangled game GG, ω(Gn)(1ε2)Ω(nQlog(IO)log(ε)Q)\omega^*(G^n) \le (1 - \varepsilon^2)^{\Omega(\frac{n}{Q\log(|I||O|)} - \frac{|\log(\varepsilon)|}{Q})} where pp is the input distribution of GG and Q=I2maxxypxy2minxypxyQ= \frac{|I|^2 \max_{xy} p_{xy}^2 }{\min_{xy} p_{xy} }. This implies parallel repetition with exponential decay as long as minxy{pxy}0\min_{xy} \{p_{xy}\} \neq 0 for general games. To prove this parallel repetition, we introduce the concept of \emph{Superposed Information Cost} for entangled games which is inspired from the information cost used in communication complexity.Comment: In the first version of this paper we presented a different, stronger Corollary 1 but due to an error in the proof we had to modify it in the second version. This third version is a minor update. We correct some typos and re-introduce a proof accidentally commented out in the second versio

    Limitations to Frechet's Metric Embedding Method

    Full text link
    Frechet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Frechet embedding is Bourgain's embedding. The authors have recently shown that for every e>0 any n-point metric space contains a subset of size at least n^(1-e) which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is non-Frechet, and the purpose of this note is to show that this is not coincidental. Specifically, for every e>0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Frechet embedding into l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur

    Replica Placement on Bounded Treewidth Graphs

    Full text link
    We consider the replica placement problem: given a graph with clients and nodes, place replicas on a minimum set of nodes to serve all the clients; each client is associated with a request and maximum distance that it can travel to get served and there is a maximum limit (capacity) on the amount of request a replica can serve. The problem falls under the general framework of capacitated set covering. It admits an O(\log n)-approximation and it is NP-hard to approximate within a factor of o(logn)o(\log n). We study the problem in terms of the treewidth tt of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of WADS'1

    Approximation Algorithms for the Capacitated Domination Problem

    Full text link
    We consider the {\em Capacitated Domination} problem, which models a service-requirement assignment scenario and is also a generalization of the well-known {\em Dominating Set} problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service. In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding approximation results to the well-known approximations of the traditional {\em Dominating Set} problem. Together with our previous work, this closes the problem of generally approximating the optimal solution. On the other hand, from the perspective of parameterization, we prove that this problem is {\it W[1]}-hard when parameterized by a structure of the graph called treewidth. Based on this hardness result, we present exact fixed-parameter tractable algorithms when parameterized by treewidth and maximum capacity of the vertices. This algorithm is further extended to obtain pseudo-polynomial time approximation schemes for planar graphs

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    The influence of coal mining on radon potential

    Get PDF
    Pit waters from hard-coal and brown-coal mining as well as sediments and soils along sewers and rivers in the vicinity of collieries are investigated in the scope of radiation protection. The greatest amount of 226Ra is discharged by hard-coal collieries in the order of several ten Bq l21 at simultaneous occurrence of high mineralised brines. In contact with sulphate-bearing surface water, 226Ra co-precipitates with Ba and is deposited as radiobarite. The contamination with 226Ra leads to high activity concentrations and increased gamma dose rates. The special situation of diadochic incorporation of 226Ra into the dense crystal lattice prevents 222Rn from emanating. However in sediments influenced by brown-coal mining 226Ra is adsorbed at the surfaces of ferric hydroxides and, therefore, 222Rn can easily emanate
    corecore