81 research outputs found

    A Dynamic, Mechanistic Model of the Ozone/Peroxide Process for Destruction of Micropollutants in Water

    Get PDF
    The development of a dynamic, mechanistic model of the ozone/peroxide destruction of a micropollutant is discussed. A mathematical model consisting of a set of partial differential and algebraic equations to describe the change in concentration in a bubble contactor for each species is presented, and numerical methods to solve this system of equations are discussed briefly. Sensitivity of the model to input parameters is investigated; particularly, the reaction rate constant between the micropollutant and the hydroxyl radical, mass transfer coefficient, liquid dispersion coefficient, gas dispersion coefficient, in fluent pH, total carbonate species concentration, and reactor configuration. Transient results show the system approaches steady state within three bed-volumes under the specified conditions. Model predictions indicate that in the presence of carbonate species, the rate constant between the micropollutant and the hydroxyl radical is of particular importance for micropollutant removal. Species having rate constants greater than 10(superscript)9M(superscript)-1s(superscript)-1 compete well with the carbonate/hydroxyl radical reactions. Results demonstrate the efficiency of micropollutant removal in low dispersion reactors. Gas phase dispersion and reactor configuration are shown to have relatively little effect on predicted micropollutant removal. Model predictions compare well to data from an existing ozone/peroxide plant.Master of Science in Environmental Engineerin

    The molecular phylogeny of eph receptors and ephrin ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue distributions and functions of Eph receptors and their ephrin ligands have been well studied, however less is known about their evolutionary history. We have undertaken a phylogenetic analysis of Eph receptors and ephrins from a number of invertebrate and vertebrate species.</p> <p>Results</p> <p>Our findings indicate that Eph receptors form three major clades: one comprised of non-chordate and cephalochordate Eph receptors, a second comprised of urochordate Eph receptors, and a third comprised of vertebrate Eph receptors. Ephrins, on the other hand, fall into either a clade made up of the non-chordate and cephalochordate ephrins plus the urochordate and vertebrate ephrin-Bs or a clade made up of the urochordate and vertebrate ephrin-As.</p> <p>Conclusion</p> <p>We have concluded that Eph receptors and ephrins diverged into A and B-types at different points in their evolutionary history, such that primitive chordates likely possessed an ancestral ephrin-A and an ancestral ephrin-B, but only a single Eph receptor. Furthermore, ephrin-As appear to have arisen in the common ancestor of urochordates and vertebrates, whereas ephrin-Bs have a more ancient bilaterian origin. Ancestral ephrin-B-like ligands had transmembrane domains; as GPI anchors appear to have arisen or been lost at least 3 times.</p

    Barriers to participation in mental health research: are there specific gender, ethnicity and age related barriers?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that the incidence, prevalence and presentation of mental disorders differ by gender, ethnicity and age, and there is evidence that there is also differential representation in mental health research by these characteristics. The aim of this paper is to a) review the current literature on the nature of barriers to participation in mental health research, with particular reference to gender, age and ethnicity; b) review the evidence on the effectiveness of strategies used to overcome these barriers.</p> <p>Method</p> <p>Studies published up to December 2008 were identified using MEDLINE, PsycINFO and EMBASE using relevant mesh headings and keywords.</p> <p>Results</p> <p>Forty-nine papers were identified. There was evidence of a wide range of barriers including transportation difficulties, distrust and suspicion of researchers, and the stigma attached to mental illness. Strategies to overcome these barriers included the use of bilingual staff, assistance with travel, avoiding the use of stigmatising language in marketing material and a focus on education about the disorder under investigation. There were very few evaluations of such strategies, but there was evidence that ethnically matching recruiters to potential participants did not improve recruitment rates. Educational strategies were helpful and increased recruitment.</p> <p>Conclusion</p> <p>Mental health researchers should consider including caregivers in recruitment procedures where possible, provide clear descriptions of study aims and describe the representativeness of their sample when reporting study results. Studies that systematically investigate strategies to overcome barriers to recruitment are needed.</p

    Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of <it>Pax3 </it>is therefore an important endeavour in elucidating the myogenic gene regulatory network.</p> <p>Results</p> <p>We have undertaken a screen in the mouse embryo which employs a <it>Pax3<sup>GFP </sup></it>allele that permits isolation of Pax3 expressing cells by flow cytometry and a <it>Pax3<sup>PAX3-FKHR </sup></it>allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the <it>Pax3 </it>mutant phenotype. Microarray comparisons were carried out between <it>Pax3<sup>GFP/+ </sup></it>and <it>Pax3<sup>GFP/PAX3-FKHR </sup></it>preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function <it>Pax3 </it>mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount <it>in situ </it>hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation.</p> <p>Conclusions</p> <p>Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as <it>Myf5 </it>are controlled positively, whereas the effect of <it>Pax3 </it>on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, <it>Pax7 </it>and also <it>Hdac5 </it>which is a potential repressor of <it>Foxc2</it>, are subject to positive control by <it>Pax3</it>.</p

    Neurotropic virus infections as the cause of immediate and delayed neuropathology

    Get PDF

    CodY Is a Nutritional Repressor of Flagellar Gene Expression in Bacillus subtilis

    No full text
    Expression of the σ(D)-dependent flagellin gene, hag, is repressed by the CodY protein in nutrient-rich environments. Analysis of a codY mutant bearing a hag-lacZ reporter suggests that the availability of amino acids in the environment is the specific signal that triggers this repression. Further, hag-lacZ expression appears to be sensitive to intracellular GTP levels, as demonstrated by increased expression upon addition of decoyinine. This result is consistent with the postulate that the availability of amino acids in the environment effects intracellular GTP levels through the stringent response. However, the levels of hag-lacZ measured upon the addition of subsets of amino acids suggest an additional mechanism(s). CodY is a DNA binding protein that could repress flagellin expression directly by binding to the hag promoter region, or indirectly by binding to the fla/che promoter region that governs expression of the σ(D) transcriptional activator required for hag gene expression. Using an electrophoretic mobility shift assay, we have demonstrated that purified CodY protein binds specifically to both the hag and fla/che promoter fragments. Additionally, CodY acts as a nutritional repressor of transcription from the fla/che promoter region that contains two functional promoters. CodY binds to both the σ(D)- and σ(A)-dependent promoters in this region, as demonstrated by DNase I footprint analyses. Footprint analyses of the hag gene demonstrated that CodY binds downstream of its σ(D)-dependent promoter. Taken together, these results identify new members of the CodY regulon that encode motility functions in Bacillus subtilis and are controlled by the σ(D) alternate sigma factor

    On kk-Submodular Relaxation

    No full text
    • 

    corecore