616 research outputs found

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    A Mathematical Model for Estimating Biological Damage Caused by Radiation

    Full text link
    We propose a mathematical model for estimating biological damage caused by low-dose irradiation. We understand that the Linear Non Threshold (LNT) hypothesis is realized only in the case of no recovery effects. In order to treat the realistic living objects, our model takes into account various types of recovery as well as proliferation mechanism, which may change the resultant damage, especially for the case of lower dose rate irradiation. It turns out that the lower the radiation dose rate, the safer the irradiated system of living object (which is called symbolically "tissue" hereafter) can have chances to survive, which can reproduce the so-called dose and dose-rate effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of Japa

    Anharmonic vs. relaxational sound damping in glasses: II. Vitreous silica

    Full text link
    The temperature dependence of the frequency dispersion in the sound velocity and damping of vitreous silica is reanalyzed. Thermally activated relaxation accounts for the sound attenuation observed above 10 K at sonic and ultrasonic frequencies. Its extrapolation to the hypersonic regime reveals that the anharmonic coupling to the thermal bath becomes important in Brillouin-scattering measurements. At 35 GHz and room temperature, the damping due to this anharmonicity is found to be nearly twice that produced by thermally activated relaxation. The analysis also reveals a sizeable velocity increase with temperature which is not related with sound dispersion. This suggests that silica experiences a gradual structural change that already starts well below room temperature.Comment: 13 pages with 8 figure

    Effect of Injector Exit Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector using Non-Invasive Laser, Optical, and X-ray Techniques

    Get PDF
    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of fluid properties on atomization. Based on the atomization statistics and observed trends from high-speed images, a description of breakup regimes over a range of Reynolds and Weber numbers was created. Next, X-ray computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass concentration which varied with injection pressure. Finally, a parametric study of injector exit geometry demonstrated that spray breakup time, breakup type, and sheet stability could be controlled with exit geometry. Implications for these data on injector stability and atomization efficiency are discussed considering the desired performance characteristics of liquid-liquid rocket injectors

    Learning motion primitives of object manipulation using Mimesis Model

    Get PDF

    Anharmonic vs. relaxational sound damping in glasses: I. Brillouin scattering from densified silica

    Full text link
    This series discusses the origin of sound damping and dispersion in glasses. In particular, we address the relative importance of anharmonicity versus thermally activated relaxation. In this first article, Brillouin-scattering measurements of permanently densified silica glass are presented. It is found that in this case the results are compatible with a model in which damping and dispersion are only produced by the anharmonic coupling of the sound waves with thermally excited modes. The thermal relaxation time and the unrelaxed velocity are estimated.Comment: 9 pages with 7 figures, added reference

    Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2

    Full text link
    Magnetic excitations in CuCrO2_{2}, CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2}, Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2}, and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} have been studied by powder inelastic neutron scattering to elucidate the element substitution effects on the spin dynamics in the Heisenberg triangular-lattice antiferromagnet CuCrO2_{2}. The magnetic excitations in CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2} consist of a dispersive component and a flat component. Though this feature is apparently similar to CuCrO2_{2}, the energy structure of the excitation spectrum shows some difference from that in CuCrO2_{2}. On the other hand, in Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2} and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} the flat components are much reduced, the low-energy parts of the excitation spectra become intense, and additional low-energy diffusive spin fluctuations are induced. We argued the origins of these changes in the magnetic excitations are ascribed to effects of the doped holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure

    Inelastic neutron scattering study of the magnetic fluctuations in Sr2_2RuO4_4

    Full text link
    By performing time-of-flight neutron scattering measurements on a large amount of single crystals of Sr2_2RuO4_4, we studied detailed structure of the imaginary part of the dynamic spin susceptibility over a wide range of phase space. In the normal state at T=5 K, strong incommensurate (IC) peaks were clearly observed at around Qc=(0.3,0.3)\mathbf{Q}_\text{c}=(0.3,0.3) up to at least ℏω=80\hbar\omega=80 meV. In addition, our data also show strong magnetic fluctuations that exist on the ridges connecting the IC peaks around the (π,π)(\pi,\pi) point rather than around the Γ\Gamma point. Our results are consistent with the semi-mean-field random phase approximation calculation for a two dimensional Fermi liquid with a characteristic energy of 5.0 meV. Furthermore, the IC fluctuations were observed even at room temperature
    • 

    corecore