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Learning Motion Primitives of Object Manipulation
Using Mimesis Model

Bidan Huang1, Joanna Bryson1 and Tetsunari Inamura2

Abstract— In this paper, we present a system to learn
manipulation motion primitives from human demonstration.
This system, based on the statistical model “Mimesis Model”,
provides an easy-to-use human-interface for learning manip-
ulation motion primitives, as well as a natural language in-
terface allowing human to modify and instruct robot motions.
The human-demonstrated manipulation motion primitives are
initially encoded by Hidden Markov Models (HMM). The
models are then projected to a topological space where they
are labeled, and their similarities are represented as their
distances in the space. We then explore the unknown area in
this space by interpolation between known models. New motion
primitives are thus generated from the unknown area to meet
the new manipulation scenarios. We demonstrate this system by
learning bimanual grasping strategies. The implemented system
successfully reproduces and generalizes the motion primitives
in different grasping scenarios.

I. INTRODUCTION

Objects and tool manipulation is a key skill for service

robots. Manipulation is a sequence of motions that changes

the object’s status. A high dimensional search space makes

this sequence of motion difficult to generate. To reduce the

search space, the concept of motion primitives has been

introduced to robot planning from neuroscience [1]. The

basic principle is to discretise a manipulation task into a set

of motion primitives, each of which serves as an elementary

manipulation function. After modeling each primitive, the

whole task then can be achieved by coordinating them using

an action selection system.

Modeling motion primitives remains an open problem.

Many articles discuss how to design motion primitives that

accomplish specific tasks [15], [5], [9]. In these works, mo-

tion primitives are modeled as a set of differential equations

or control rules. New motions are generated by tuning the

parameters in the models.

In this paper we propose a system for learning manipula-

tion motion primitives from human demonstration [13], [4].

To achieve this goal, we exploit our previous work on the

Mimesis Model [11]. The Mimesis Model is a mathematical

realization of the function of the mirror neurons, which fire

both when an animal observes and when it executes a motion.

Neuroscience research shows connections between the mirror

neurons and an animal’s imitation learning mechanism [18].

The mimesis model has been shown to be effective in motion
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Fig. 1: iCub grasping a box by both arms

recognition, generation and robot imitation learning [10],

[16]. While our previous work has focused on learning whole

body movement, the present paper extends the Mimesis

Model to learn motions of manipulation that involve inter-

action with objects.

In the Mimesis Model, all demonstrated motion patterns

are projected to a topological space, called “proto-symbol

space”. In this space, the similarity between two motions are

represented as the Euclidean distance between their projected

points. Recognition of an unknown motion is done by finding

its closest known motion, while generating a new motion is

done by interpolation between the new motions. Further, the

motions are symbolized in this space by human labeling of

their projection points with the manipulation’s effects, such

as “grasp low box” or “grasp high box”. As a result, this

system provides a natural language interface allowing the

adjustment of the robot’s motion. For example, starting from

the “gasp low box” motion, we can instruct the robot to

raise its arms higher to grasp a box on the top of a cabinet

by the command “not high enough, go higher to grasp”. This

command could result in generating a motion closer to the

motion labeled by “grasp high box”.

The work of Kunori et al. [14] using hidden Markov

models to encode motion primitives for object manipulation

shares a similar concept to our work. While they focused on

extracting key features and reshaping movements for good

performance, we focus on combining known manipulation

motion primitives to generate new motions that can achieve

the desired effects. Although interpolation of known motions

is not new in motion synthesis [7], [6], most of the existing

work focus on free body motion. The application to object

manipulation is rarely discussed.

The goal of this work is to enable robot to learn manipula-

tion motion primitives and generate new motions to adapt to

unseen scenarios. The system is implemented for a bimanual

grasping task. Unlike static fingertip grasping synthesis [8],

in this task we focus on the grasp reaching motion.



This paper is organized as follows. Section II details the

proposed method: section II-A illustrates how we demon-

strate the grasping strategies; section II-B explains the con-

cept of proto-symbol space and how to create it; section II-

C details the learning process of the physical meaning of

the proto-symbols and II-D explains how to generate new

grasping motions for unseen objects. Section III shows

the experimental results, followed by the conclusion and

discussion in Section IV.

II. METHODOLOGY

We adopt the Mimesis Model to learn motion primitives of

manipulation from human demonstrations. In this approach,

the demonstrated motions are firstly encoded by Hidden

Markov Models (HMM). A topological space, called the

proto-symbol space, is constructed using gaussians to repre-

sent the similarities between the primitives within the HMM

and allow labelling. In this space, each primitive is abstracted

to a point (proto symbol). New motions are generated by

locating new points. The correlation between the location

of the new points and their physical effects is learned by

regression. This correlation allows us to directly query a new

motion by a high level task requirement.

In short, the general approach has 5 steps and is described

as follows:

1) Demonstration: A human teacher demonstrates ma-

nipulation motion primitives (section II-A).

2) Abstraction: Abstract the motion primitives by HMM

and create the proto-symbol space (section II-B).

3) Interpolation: Interpolate the proto-symbol space and

construct new HMM. (section II-C).

4) Generating: Generate motion using proto symbols

(section II-D).

5) Learning: The robot reproduces the motion and learns

the correlation between the location of the proto sym-

bols and the effect of the generated motions (section II-

E).

A. Demonstration

The motion primitives of manipulation are first demon-

strated by a human. The same primitives are demonstrated a

few time so that the HMM is able to encode the general

features of the movement. Each primitive corresponds to

the movement in one scenario. To enable the robot to

work in different scenarios, different primitives need to be

demonstrated. For example, to design a motion primitive for

fetching boxes in different sizes, we need to demonstrate at

least two primitives: grasping a small box and grasping a big

box (Figure 2). Grasping a box with the size between the big

one and the small one may then be achieved by interpolation

between these primitives. For more complex motion, more

than two primitives may be required.

In this approach, the demonstrated motions provide not

only the dynamics of the motion primitives, but also define

the feasibility of the motions. As the new motions are inter-

polations of the demonstrations, joint limits or singularities

can be avoided by well-defined demonstrations.

(a) (b)

Fig. 2: Human bi-manual grasps. (a) A human grasping a small box. (b) A human
grasping a big box

B. Abstraction

In this step, the demonstrated motion primitives are ab-

stracted to “proto symbols” in the proto-symbol space,

where the similarity between different motion patterns are

represented as Euclidean distance. The abstraction is done

by encoding the motion patterns in Hidden Markov Model

(HMM).

An HMM is a stochastic mathematical framework for

learning sequential data. It describes the stochastic sequences

as Markov chains, where the states of the sequences depends

only on the previous state. In this work we use a left-to-right

continuous Hidden Markov Model (CHMM) to encode the

motion primitives (Figure 3).

Each motion pattern is described by a set of variables: λ
= {Q,A,B, π}, where Q = {q1, ..., qN} is a finite set of

states, A = {aij} is the state transition probability matrix

denoting the probability that node qi transits to qj , B = {bi}
is the continuous output probabilities denoting the probability

distribution that the output vector o[t] is given by qi, and π
is the the initial distribution. The π is the same as for each

CHMM as we use a left-to-right CHMM model. Therefore,

the parameter set P = {aij , bi} characterizes the behavior

of a stochastic process. We call P a proto symbol.

The CHMM is learned using the Baum-Welch algorithm.

For simplicity, we use a single Gaussian model for the output

of each node in the CHMM. This allows us to synthesis new

motions simply by interpolating the means and covariances

of the Gaussians (see section II-C).

The proto-symbol space is constructed to represent the

similarity between CHMMs. This requires us to compute the

similarity between each pair of CHMMs. In this work, we

use the Bhattacharyya distance [12] as our similarity metric,

as it is a symmetric metric with respect to two probability

variables. The Bhattacharyya distance BD(p, q) between

two Gaussian distributions p(x;μp,Σp) and q(x;μq,Σq) is

defined as follows:
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Fig. 3: An illustration of encoding a motion by Continuous Hidden Markov Model
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where

μpq = μp − μq (2)

The Bhattacharyya distance DB(λ1, λ2) between two

HMMs is computed by summing the distances between the

Gaussian distributions, i.e. the output probability distribu-

tions for the nodes:

DB(λ1, λ2) =∑
i

√
BD (N1i (μ1i,Σ1i) ,N2i (μ2i,Σ2i))

(3)

where Nji(μji,Σji) is the output probability at the i-th node

qi of the HMM λi.

The proto-symbol space is constructed using the multi-

dimensional scaling technique (MDS) [19]. This technique

computes the locations of the CHMMs in the proto-symbol

space by minimizing the criterion:

S2 =
∑
i,j

(DBij − dij) (4)

where DBij is the Bhattacharyya distance between the ith
and jth CHMMs and dij is their Euclidean distance between

their proto symbols. Figure 4 shows a proto-symbol space

constructed by 4 proto symbols.

C. Interpolation

To generate a new motion, a new location in the proto-

symbol space is exploited. This is done by interpolation

between different proto symbols. In the left-to-right model,

the expected duration si of the state qi can be computed as

si =

∞∑
n=1

n(1− aii)a
n−1
ii =

1

1− aii
, (5)

where aii is the probability of self-transition at the state qi.
A new proto symbol P̂ is expressed by the linear com-

bination of m proto symbols (P1, ...,Pm). The weights of

different proto symbols are expressed by the mix coefficient

cj . The expected duration ŝi for the new motion in the state

qi is computed as

ŝi =

m∑
j

cjs
(j)
i (6)

with this we can compute the new state transition probability

âii as

âii =
ŝi − 1

ŝi
(7)

Note that according to Eq. 6, si ≥ 1 and hence the following

constraint must be satisfied

m∑
j

cj

1− ajii
≥ 1 (8)

To compute the new output probability bi, since there is

only one Gaussian in each state, we simply sum the means

and variances of the Gaussians in the same state of different

HMMs as

b̂i(O) = N (O; μ̂i, σ̂
2
i ) =

m∑
j

cjb
(j)
i (O) (9)

where

μ̂i =
m∑
j

cjμ
(j)
i (10)

σ̂2
i =

m∑
j

c2jσ
(j)
i

2
(11)

μ
(j)
i and σ

(j)
i are the mean and variance of the Gaussian

representing the i-th state.

In theory this method can also be used to extrapolate

the proto symbols with a negative mixing coefficient, which

allows us to explore outside the feasible region defined by

the demonstrations. This could generate motions outside of

the robot’s experience. However the feasibility can not be

guaranteed, e.g. this may gives joint angles over the robot’s

limit.

D. Generating

A new motion sequence is generated from the new proto-

symbols by using an averaging method [11]. The steps for

generation are as follow :

1) Starting from a node q1, let the motion element se-

quence be O = φ.

2) Using the transition probability {aij} to generate the

states qj .

3) Using the output probabilities {bi} to decide the output

label ok.

4) Adding the output label ok to the motion elements

sequence O.

5) Stop when the generation process reaches the end node

qN .

Due to the stochastic nature of this method, motions

generated by the same HMM are not identical at each time.



Nevertheless, they have the same dynamics as they are

generated from the same parameters A and B. We repeat the

above steps and average the generated motions to produce

the final motion. As the duration of each generated motion

is different, before averaging we uniform the time in each

motion by:

θ̄ (t) = θ

(
T

t

Tu

)
(12)

where T is the time duration of each motion, and Tu is the

uniformed time duration. After this joint angles are averaged

amount all generated motions.

E. Learning

Unlike free body motions, motion for object manipulation

needs to achieve certain outcome, such as grasping a given

size of box. However the physical effects of the demonstrated

and generated motions are unknown, as the robot have a

different embodiment from the human demonstrator. For

example, the motion for a human to grasp a 30cm length

box may only allow the robot to grasp a 15cm length

box. Therefore, a learning process is needed to quantify the

correlation between the location of the new proto symbol

and its physical effect.

To do this, we first interpolate the proto-symbol space with

a few different mixing coefficients. We then generate the

corresponding motions and perform them with a robot. The

platform we used is the iCub in the Webots simulator. As

the iCub has the same joint configuration of arm as the one

provided by Kinect, we directly apply the generated motions

to the iCub. The outcome of the motion, for example the size

of the box the robot can grasp with the motion, are recorded

with their corresponding mixing coefficients.

The correlation between the sizes and the mixing coeffi-

cients is then found by regression analysis. Figure 6 shows

an example of the result of the regression. With this result,

we are able to infer the mixing coefficient for generating a

proper motion. By using the method detailed in section II-

D, the motion with a desired effect can be generated.

Our experiments verify that this method can generate new

grasping motions and the result will be discussed in the next

section in details.

III. EXPERIMENT

This section presents the implementation of the system

in learning bi-manual grasping motion primitives. Bi-manual

grasping is regularly used in daily life. One of the most com-

monly used strategies is putting two hands at the opposite

sides of a bulky object to apply antipodal grasps (Figure 2).

The motion primitives, including an approaching motion and

a lifting motion, can be used to grasp many different objects.

In our experiment, we focus on learning this strategy and

verify that it can be generalized to grasp objects in unseen

scenarios.

The strategy is demonstrated in two different scenarios:

grasping boxes with different sizes and grasping boxes

placed on different heights. As explained in section II-A, the
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Fig. 4: Proto-symbol space constructed by four motion primitives

demonstrations are chosen to define the boundary situations

of the grasping motions. In this experiment, four different

motion primitives are demonstrated: grasping the biggest

feasible box, grasping the smallest feasible box, grasping

the lowest feasible box and grasping the highest lowest box.

Objects with size or height outside the feasible area might be

able to be grasped by the same strategy, but the motion may

be very close to infeasible joint angles, or not be natural for

human behavior. In our case, the bi-manual grasp of a box

longer than the distance between the left and right elbow is

very difficult for the iCub; bi-manual grasp of a very small

size box is possible but human would normally use a single-

hand grasp.

All the demonstrated motion sequences are recorded by

Kinect, a skeleton tracking device widely used both in gam-

ing industry and academic research [17]. It is a markerless

stereo camera which can automatically detect and track

human joint configuration. The output data from Kinect is

converted to joint angle space.

In this experiment, the grasping motions only involve the

arms. The objects are placed in the working space of the

human demonstrator so that the human does not need to

change the location to grasp the objects. Due to the technical

limitations of Kinect, it can not record the wrist joint and

hence wrist is omitted in our current experiment. In total, 8

degrees of freedom are recorded in the human motion: left

shoulder (3D), right shoulder (3D), left elbow (1D) and right

elbow (1D). When the hands contact the objects, the wrist

joints will change due to the force applied by the arm. This

adds extra uncertainties to the grasping motion, as well as

a certain amount of compliance. As a result the box may

rotate some angle after lifting (Figure 10).

Each grasping motion is demonstrated five times. In all

demonstrations, the starting postures are the starting posture

used by Kinect: the Ψ pose that with two arms raising over

the head, both palms facing inside.

The raw data are noisy due to the limitation of the

motion capture device. To denoise the motion signal, we used

second-order low-pass filters to smooth the motion outputs



(a) Motion 1 (b) Motion 2 (c) Motion 3 (d) Motion 4

(e) Motion 1 (f) Motion 2 (g) Motion 3 (h) Motion 4

Fig. 5: (a)-(d): Human demonstrating bi-manual grasp of a small box (size
20cm(length) × 15cm(width) × 10cm(height)). (e)-(h): Human demonstrating bi-
manual grasp of a big box (size 40cm(length) × 20cm(width) × 15cm(height))

and remove high frequency noise caused by vibration of the

machinery. Each motion is low-pass filtered by 1Hz, 5Hz and

10Hz and all the filtered results are supplied as the training

data for the Mimesis Model.The demonstrated motions are

performed by the Webots iCub to find out their outcomes.

In the abstraction step (section II-B), the four motion

primitives are encoded by four CHMMs. To completely

distinguish between four points we need at lease a three

dimensional space. Hence we construct a three dimensional

proto-symbol space by using the MDS with these CHMMs

(Figure 4). To generate new grasping motions, we interpolate

(section II-C) the proto-symbol space with different mixing

coefficients. New motions are then generated at each of the

interpolation points as detailed in the section II-D. These

generated motion are then perform by the Webots iCub to

examine their effects.

All motions are modeled in ten states, determined by five-

fold cross validation, and each state is represented by a single

Gaussian to keep the simplicity.

A. Grasping different sizes boxes

In this scenario we demonstrate the strategies of grasping

different sizes of boxes. The boxes are placed on a cylindrical

stand with 84cm height. The human demonstrator stands

20cm in front of the cylindrical stand (Figure 5).

Figure 5 shows the motion sequences. As can be seen

from the figure, for grasping the small box, the hands move

directly to it, while for grasping the big box, the arms first

open to create a certain distance between hands and then

close to reduce the distance until contact with the box. This

is to avoid unwanted collision with the box during reaching.

New motions are then generated by mixing the demon-

strations. To learn the effect of the motions, all demonstrated

and generated motions are performed by the robot. The sizes

of the boxes are initially estimated by forward kinematics,

and then verified by robot executing the motion to grasp a

box. The motion that can hold a box and lift it vertically

without any slipping is consider to be a successful grasp.

Mixing Coefficient of the
Interpolation Points

Box size of
successful grasps

(cm)

0(small box) 1(big box) 43

0.2(small box) 0.8(big box) 39

0.5(small box) 0.5(big box) 35

0.8(small box) 0.2(big box) 28

1(small box) 0(big box) 25

TABLE I: Mixing coefficient of the interpolation points and the box size of
successful grasps (training)
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Fig. 6: Linear regression of the interpolation points

Table I shows the mixing coefficients of the motions and

the corresponding size of boxes of successful grasps. Note

that mixing coefficients always sum to 1. When we make the

mixing coefficient to be 1 for one motion and 0 for the other,

the generated motion simply corresponds to the motion with

mixing coefficient 1. Linear regression is then applied to find

out the correlation between the mixing coefficients and the

box sizes.

Figure 6 shows the linear regression result of the mixing

coefficients and the size of successfully grasped boxes. With

the regression results, given a size of box, the mixing

coefficient of generating a corresponding grasping motion

can be deduced. To test this method, we apply this method

to grasp four un-demonstrated boxes with different sizes. All

of them can be successfully lifted by the synthesis grasping

motions. Table II lists the given boxes size and the computed

mixing coefficient and Figure 10 shows the corresponding

motions.

B. Grasping boxes from different positions

In this scenario the goal is to grasp boxes from different

heights. Two motions are demonstrated to grasp a high and

a low box. In the demonstrations the high box is placed at

the height of 150cm and the low box is placed at 70cm.

In this case, the two demonstrations are not only different

in the arm trajectories but also different in the time duration

Given Box Size Predicted Mixing Coefficient

27 0.89(small box) 0.11(big box)

30 0.72(small box) 0.27(big box)

36 0.44(small box) 0.56(big box)

40 0.16(small box) 0.74(big box)

TABLE II: Given Box Sizes (cm) and the Predicted Mixing Coefficient (testing)



(a) Motion 1 (b) Motion 2 (c) Motion 3 (d) Motion 4

(e) Motion 1 (f) Motion 2 (g) Motion 3 (h) Motion 4

(i) Motion 1 (j) Motion 2 (k) Motion 3 (l) Motion 4

(m) Motion 1 (n) Motion 2 (o) Motion 3 (p) Motion 4

Fig. 7: Robot grasping different boxes with the generated motions. (a)-(d) Box size
0.27cm. (e)-(h) Box size 0.3cm. (i)-(l) Box size 0.35cm. (m)-(p) Box size 0.4cm.
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(a) Grasping box in a low position
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(b) Grasping box in a high position

Fig. 8: (a) Left arm motion of a human demonstration of grasping a low box. (b)
Left arm motion of a human demonstration of grasping a high box.

(Figure 8). The motion of grasping the high box lasts shorter

than grasping the low box as the initial hand position is closer

to the box position. At the same time the lifting parts of the

motions are different: for the high box the lifting distance is

smaller than the low box because of the joint limits of the

arms.

Following the same process as described above, we inter-

polate between the motions for grasping a low box and a

high box (Table III). We apply linear regression and hence

find out the correlation between the mixing coefficients and

the heights of the box (Figure 9).

With the learned correlation, we query the mixing coeffi-

cients for four different un-demonstrated heights (Table IV).

The generated motions are tested with the Webots iCub,

which successfully lifted all the boxes. Besides the height

of the box, the time of performing the task and the lifting

Mixing Coefficient Box height(cm)

0(high box) 1(low box) 49

0.2(high box) 0.8(low box) 53

0.5(high box) 0.5(low box) 58

0.8(high box) 0.2(low box) 62

1(high box) 0(low box) 64

TABLE III: Mixing coefficients of the interpolation points and the box heights
(center of mass from the ground) of successful grasps (training).
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Fig. 9: Linear regression of the interpolation points

distances are also interpolated.

IV. CONCLUSIONS

The system presented in this paper uses the Mimesis

Model to learn motion primitives for object manipulation.

It provides an easy-to-use interface for robot motion gen-

eration. Motion primitives are the elementary motions that

accomplish basic functions. Neuroscience also indicates the

value of reducing the degrees of freedom, since the vertebrate

motor system seems to generate motions by combining a

small number of motor primitives [1], [3]. Our experiment

shows that by combining two motion primitives (8 d.o.f) we

can indeed generate many different motion patterns. This

framework substantially simplifies the modeling of motion

primitives and therefore of control more generally.

In our system, each motion primitive is symbolized in the

proto-symbol space and labeled by its effects, e.g. “grasp

high box”, “grasp low box” and etc. This provides a linguistic

interface for the human to instruct robot motion, by giving

language instructions like “go lower to grasp the box”.

These primitives can be interpreted as behavior modules,

allowing integration with standard action-selection systems

for modular AI. Putting more symbolized motion primitives

in the proto-symbol space allows us to give more complex

instruction and the robot to generate more complex motions.

Further, new instructions might be learned autonomously

Given Box
Height

Predicted Mixing Coefficient

50 0.02(high box) 0.98(low box)

55 0.34(high box) 0.66(low box)

60 0.66(high box) 0.34(low box)

63 0.86(high box) 0.14(low box)

TABLE IV: Given Box Height (cm) and the Predicted Mixing Coefficient
(testing)



(a) Motion 1 (b) Motion 2 (c) Motion 3 (d) Motion 4

(e) Motion 1 (f) Motion 2 (g) Motion 3 (h) Motion 4

(i) Motion 1 (j) Motion 2 (k) Motion 3 (l) Motion 4

(m) Motion 1 (n) Motion 2 (o) Motion 3 (p) Motion 4

Fig. 10: A robot grasping boxes from different heights with generated motions.
(a)-(d) Box at height 50cm. (e)-(h) Box at height 55cm. (i)-(l) Box at height 60cm.
(m)-(p) Box at height 63cm.

by combining the observation of new terms with imitation

learning [2]. Due to the low-dimensional projection, the robot

should be able to adjust the mixing coefficient and generate

new motions to execute a command. Despite the human and

robot having different embodiments, the proto-symbol space

allows the robot and human to communicate.
We implement this system in the Webots simulator with

the iCub robot. Two different sets of primitives are learned

for the bimanual grasp: grasping different sizes of boxes

and grasping boxes from different locations. Interpolation

in the proto-symbols space produces new motion primitives

that enable the robot to successfully grasp boxes in different

scenarios. The correlation between the new motions and their

effects are learned using first order linear regression. In our

future work of learning more complex motion primitives,

higher order or nonlinear regression may need to be em-

ployed.
The presented experiment provides a good starting point

for our future study in learning more motion primitives for

object manipulation. It shows that it is possible to directly

adjust parameters in the operational space, without fine

tuning variables in the model. This has the advantage, from

the user point of view, of planning the motion primitives

more intuitively. In this paper, we show that with the Mimesis

Model control in one dimension (object size, object height)

works effectively. In the future work, we will further study

the control in multiple dimensions, through interpolation

between multiple proto symbols.

REFERENCES

[1] E Bizzi, VCK Cheung, A d’Avella, P Saltiel, and Me Tresch. Combin-
ing modules for movement. Brain Research Reviews, 57(1):125–133,
2008.

[2] Joanna J. Bryson. Embodiment versus memetics. Mind & Society,
7(1):77–94, June 2008.

[3] Joanna J. Bryson. Structuring intelligence: The role of hierarchy,
modularity and learning in generating intelligent behaviour. In
David McFarland, Keith Stenning, and Margaret McGonigle, editors,
The Complex Mind: An Interdisciplinary Approach, pages 126–143.
Palgrave-Macmillan, Basingstoke, June 2012.

[4] S. Calinon, F. Guenter, and A. Billard. On learning, representing,
and generalizing a task in a humanoid robot. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2):286–
298, 2007.

[5] Javier Felip, Janne Laaksonen, Antonio Morales, and Ville Kyrki.
Manipulation primitives: A paradigm for abstraction and execution of
grasping and manipulation tasks. Robotics and Autonomous Systems,
2012.

[6] Pascal Glardon, Ronan Boulic, and Daniel Thalmann. Pca-based
walking engine using motion capture data. In Computer Graphics
International, 2004. Proceedings, pages 292–298. IEEE, 2004.

[7] Kiyoshi Hoshino. Interpolation and extrapolation of repeated motions
obtained with magnetic motion capture. IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences,
87(9):2401–2407, 2004.

[8] Bidan Huang, Sahar El-Khoury, Miao Li, Joanna J. Bryson, and Aude
Billard. Learning a real time grasping strategy. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages
593–600, 2013.

[9] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and
Stefan Schaal. Dynamical movement primitives: learning attractor
models for motor behaviors. Neural computation, 25(2):328–373,
2013.

[10] Tetsunari Inamura and Tomohiro Shibata. Geometric proto-symbol
manipulation towards language-based motion pattern synthesis and
recognition. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 334–339. IEEE, 2008.

[11] Tetsunari Inamura, Iwaki Toshima, Hiroaki Tanie, and Yoshihiko
Nakamura. Embodied symbol emergence based on mimesis theory.
The International Journal of Robotics Research, 23(4-5):363–377,
2004.

[12] Thomas Kailath. The divergence and bhattacharyya distance measures
in signal selection. Communication Technology, IEEE Transactions on,
15(1):52–60, 1967.
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