1,154 research outputs found
The Global Structure and Evolution of a Self-Gravitating Multi-phase Interstellar Medium in a Galactic Disk
Using high resolution, two-dimensional hydrodynamical simulations, we
investigate the evolution of a self-gravitating multi-phase interstellar medium
in the central kiloparsec region of a galactic disk. We find that a
gravitationally and thermally unstable disk evolves, in a self-stabilizing
manner, into a globally quasi-stable disk that consists of cold (T < 100 K),
dense clumps and filaments surrounded by hot (T > 10^4 K), diffuse medium. The
quasi-stationary, filamentary structure of the cold gas is remarkable. The hot
gas, characterized by low-density holes and voids, is produced by shock
heating. The shocks derive their energy from differential rotation and
gravitational perturbations due to the formation of cold dense clumps. In the
quasi-stable phase where cold and dense clouds are formed, the effective
stability parameter, Q, has a value in the range 2-5. The dynamic range of our
multi-phase calculations is 10^6 - 10^7 in both density and temperature. Phase
diagrams for this turbulent medium are analyzed and discussed.Comment: 10 pages, 3 figures, ApJ Letters in press (vol. 516
Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History
We model the star formation history (SFH) and the chemical evolution of the
Galactic disk by combining an infall model and a limit-cycle model of the
interstellar medium (ISM). Recent observations have shown that the SFH of the
Galactic disk violently variates or oscillates. We model the oscillatory SFH
based on the limit-cycle behavior of the fractional masses of three components
of the ISM. The observed period of the oscillation ( Gyr) is reproduced
within the natural parameter range. This means that we can interpret the
oscillatory SFH as the limit-cycle behavior of the ISM. We then test the
chemical evolution of stars and gas in the framework of the limit-cycle model,
since the oscillatory behavior of the SFH may cause an oscillatory evolution of
the metallicity. We find however that the oscillatory behavior of metallicity
is not prominent because the metallicity reflects the past integrated SFH. This
indicates that the metallicity cannot be used to distinguish an oscillatory SFH
from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap
Formation of Sub-galactic Clouds under UV Background Radiation
The effects of the UV background radiation on the formation of sub-galactic
clouds are studied by means of one-dimensional hydrodynamical simulations. The
radiative transfer of the ionizing photons due to the absorption by HI, HeI and
HeII, neglecting the emission, is explicitly taken into account. We find that
the complete suppression of collapse occurs for the clouds with circular
velocities typically in the range V_c \sim 15-40 km/s and the 50% reduction in
the cooled gas mass with V_c \sim 20-55 km/s. These values depend most
sensitively on the collapse epoch of the cloud, the shape of the UV spectrum,
and the evolution of the UV intensity. Compared to the optically thin case,
previously investigated by Thoul & Weinberg (1996), the absorption of the
external UV photon by the intervening medium systematically lowers the above
threshold values by \Delta V_c \sim 5 km/s. Whether the gas can contract or
keeps expanding is roughly determined by the balance between the gravitational
force and the thermal pressure gradient when it is maximally exposed to the
external UV flux. Based on our simulation results, we discuss a number of
implications on galaxy formation, cosmic star formation history, and the
observations of quasar absorption lines. In Appendix, we derive analytical
formulae for the photoionization coefficients and heating rates, which
incorporate the frequency/direction-dependent transfer of external photons.Comment: 38 pages, 16 figures, accepted for publication in Ap
Column density distribution of the Lyman alpha forest - Evidence for the minihalo model
The column density distribution of the Lyman alpha forest is predicted for a minihalo model in which the baryon clouds responsible for the absorption lines are supposed to be in gravitational equilibrium under the potential of cold dark matter. It is determined primarily by the density profile across a typical cloud. The evolution of minihalos within various environments is discussed in relation to the redshift dependence of the Lyman alpha forest
Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors
We report the first measurement of the optical phonon dispersion in optimally
doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering.
We found a strong softening of the Cu-O bond stretching phonon at about
q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates.
A direct comparison with angle-resolved photoemission spectroscopy measurements
taken on the same sample, revealed an excellent agreement in terms of energy
and momentum between the ARPES nodal kink and the soft part of the bond
stretching phonon. Indeed, we find that the momentum space where a 63 meV kink
is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which
corresponds exactly to the soft part of the bond stretching phonon mode. This
result supports an interpretation of the ARPES kink in terms of electron-phonon
coupling.Comment: submited to PR
Charge excitations associated with charge stripe order in the 214-type nickelate and superconducting cuprate
Charge excitations were studied for stipe-ordered 214 compounds,
LaSrNiO and 1/8-doped La(Ba, Sr)CuO
using resonant inelastic x-ray scattering in hard x-ray regime. We have
observed charge excitations at the energy transfer of 1 eV with the momentum
transfer corresponding to the charge stripe spatial period both for the
diagonal (nikelate) and parallel (cuprates) stripes. These new excitations can
be interpreted as a collective stripe excitation or charge excitonic mode to a
stripe-related in-gap state.Comment: 5 pages, 4 figure
The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media
We use the Gaussian-fit results of Paper I to investigate the properties of
interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM
and CNM) are physically distinct components. The CNM spin temperature histogram
peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume
filling fraction of about 0.50 for the WNM; this value is very rough. The
upper-limit WNM temperatures determined from line width range upward from about
500 K; a minimum of about 48% of the WNM lies in the thermally unstable region
500 to 5000 K. The WNM is a prominent constituent of the interstellar medium
and its properties depend on many factors, requiring global models that include
all relevant energy sources, of which there are many. We use Principal
Components Analysis, together with a form of least squares fitting that
accounts for errors in both the independent and dependent parameters, to
discuss the relationships among the four CNM Gaussian parameters. The spin
temperature T_s and column density N(HI) are, approximately, the two most
important eigenvectors; as such, they are sufficient, convenient, and
physically meaningful primary parameters for describing CNM clouds. The Mach
number of internal macroscopic motions for CNM clouds is typically 2.5, but
there are wide variations. We discuss the historical tau-T_s relationship in
some detail and show that it has little physical meaning. We discuss CNM
morphology using the CNM pressure known from UV stellar absorption lines.
Knowing the pressure allows us to show that CNM structures cannot be isotropic
but instead are sheetlike, with length-to-thickness aspect ratios ranging up to
about 280. We present large-scale maps of two regions where CNM lies in very
large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of
turbulent Mach number in equation 16 and figure 12; the new typical value is
1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the
astro-ph version to conserve paper. 60 pages, 16 figure
Magnetic nature of the 500 meV peak in observed with resonant inelastic x-ray scattering at the Cu -edge
We present a comprehensive study of the temperature and doping dependence of
the 500 meV peak observed at in resonant inelastic x-ray
scattering (RIXS) experiments on . The intensity of this peak
persists above the N\'eel temperature (T=320 K), but decreases gradually
with increasing temperature, reaching zero at around T=500 K. The peak energy
decreases with temperature in close quantitative accord with the behavior of
the two-magnon Raman peak in , and with suitable
rescaling, agrees with the Raman peak shifts in and . The overall dispersion of this excitation in the Brillouin zone is
found to be in agreement with theoretical calculations for a two-magnon
excitation. Upon doping, the peak intensity decreases analogous to the Raman
mode intensity and appears to track the doping dependence of the spin
correlation length. Taken together, these observations strongly suggest that
the 500 meV mode is magnetic in character and is likely a two-magnon
excitation.Comment: 13 pages, 9 figure
Why Librarianship? A Comparative Study Between University of Tsukuba, University of Hong Kong, University of British Columbia and Shanghai University
Career decisions are motivated in part by our internal values, but also are influenced strongly by innumerable external forces perceived in the context of our lives. In the research reported here, we explore various social, cultural, economic, and educational factors, as well as personal and professional reasons that influence students in choosing library and information science professions as a career. Master of Library and Information Science (MLIS) students from four universities located in four different regions were invited to take part in an online questionnaire survey. The universities were Shanghai University (SHU), the University of British Columbia (UBC), the University of Hong Kong (HKU) and the University of Tsukuba (UT). 175 self-completed questionnaires were collected in total. Survey results indicated that students enrolled in MLIS programmes were predominately female. Differences and similarities were encountered for the different sites. For example HKU and UBC had the largest number of students with graduate-level qualifications prior to entering the MLIS programme and students at HKU and UBC tended to vary widely in terms of their educational and occupational backgrounds. For the majority of the HKU and UBC respondents, the decision to obtain a professional qualification in LIS was driven by the desire to maximize the benefits of a career change or for career advancement, while the majority of respondents at the UT and SHU did not already have a job or much working experience. While the total surveyed populations are small; the study will be of interest and value to LIS educators and administrators responsible for recruiting MLIS graduates and hiring LIS professions.postprin
- âŠ