21,896 research outputs found

    High field superconducting phase diagrams including Fulde-Ferrell-Larkin-Ovchinnikov vortex states

    Full text link
    Motivated by a striking observation of a Fulde-Ferell-Larkin-Ovchinnikov (FFLO) vortex state in the heavy fermion material CeCoIn5 in fields {\it perpendicular} to the superconducting planes (H∄c{\bf H} \parallel c), superconducting phase diagrams including an FFLO state of quasi two-dimensional (Q2D) superconductors are systematically studied. In the clean {\it limit}, the high field superconducting state in the low temperature limit should be not the FFLO state modulating along H{\bf H}, appeared in CeCoIn5 in both H∄c{\bf H} \parallel c and H⊄c{\bf H} \perp c, but a different vortex state with a modulation, induced by the paramagnetism, perpendicular to the field. It is found that the presence of weak impurities is the origin of the absence in CeCoIn5 of the latter state and leads to the H∄c{\bf H} \parallel c phase diagram, as seen in CeCoIn5, {\it apparently} different in character from that in H⊄c{\bf H} \perp c.Comment: A reference was updated. To appear in Phys. Rev.

    Giant tunnel magnetoresistance and high annealing stability in CoFeB/MgO/CoFeB magnetic tunnel junctions with synthetic pinned layer

    Full text link
    We investigated the relationship between tunnel magnetoresistance (TMR) ratio and the crystallization of CoFeB layers through annealing in magnetic tunnel junctions (MTJs) with MgO barriers that had CoFe/Ru/CoFeB synthetic ferrimagnet pinned layers with varying Ru spacer thickness (tRu). The TMR ratio increased with increasing annealing temperature (Ta) and tRu, reaching 361% at Ta = 425C, whereas the TMR ratio of the MTJs with pinned layers without Ru spacers decreased at Ta over 325C. Ruthenium spacers play an important role in forming an (001)-oriented bcc CoFeB pinned layer, resulting in a high TMR ratio through annealing at high temperatures.Comment: 10 pages, 5 figures, submitted to Applied Physics Letter

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    Zone Leveling Crystal Growth of Thermoelectric PbTe Alloys with Sb_(2)Te_3 WidmanstÀtten Precipitates

    Get PDF
    Unidirectional solidification of PbTe-rich alloys in the pseudobinary PbTe-Sb_(2)Te_3 system using the zone leveling technique enables the production of large regions of homogeneous solid solutions for the formation of precipitate nanocomposites as compared with Bridgman solidification. (PbTe)_(0.940)(Sb_(2)Te_3)_(0.060) and (PbTe)_(0.952)(Sb_(2)Te_3)_(0.048) alloys were successfully grown using (PbTe)_(0.4)(Sb_(2)Te_3)_(0.6) and (PbTe)_(0.461)(Sb_(2)Te_3)_(0.539) as seed alloys, respectively, with 1 mm h^(–1) withdrawal velocity. In the unidirectionally solidified regions of both alloys, Widmanstatten precipitates are formed due to the decrease in solubility of Sb_(2)Te_3 in PbTe. To determine the compositions of the seed alloys for the zone leveling experiments, the solute distribution in solidification in the PbTe-richer part of the pseudobinary PbTe-Sb_(2)Te_3 system has been examined from the concentration profiles in the samples unidirectionally solidified by the Bridgman method

    Evidence regarding clinical use of microvolt T-wave alternans [Accuracy of microvolt T-wave alternans testing]

    Get PDF
    Background: Microvolt T-wave alternans (MTWA) testing in many studies has proven to be a highly accurate predictor of ventricular tachyarrhythmic events (VTEs) in patients with risk factors for sudden cardiac death (SCD) but without a prior history of sustained VTEs (primary prevention patients). In some recent studies involving primary prevention patients with prophylactically implanted cardioverter-defibrillators (ICDs), MTWA has not performed as well. Objective: This study examined the hypothesis that MTWA is an accurate predictor of VTEs in primary prevention patients without implanted ICDs, but not of appropriate ICD therapy in such patients with implanted ICDs. Methods: This study identified prospective clinical trials evaluating MTWA measured using the spectral analytic method in primary prevention populations and analyzed studies in which: (1) few patients had implanted ICDs and as a result none or a small fraction (≀15%) of the reported end point VTEs were appropriate ICD therapies (low ICD group), or (2) many of the patients had implanted ICDs and the majority of the reported end point VTEs were appropriate ICD therapies (high ICD group). Results: In the low ICD group comprising 3,682 patients, the hazard ratio associated with a nonnegative versus negative MTWA test was 13.6 (95% confidence interval [CI] 8.5 to 30.4) and the annual event rate among the MTWA-negative patients was 0.3% (95% CI: 0.1% to 0.5%). In contrast, in the high ICD group comprising 2,234 patients, the hazard ratio was only 1.6 (95% CI: 1.2 to 2.1) and the annual event rate among the MTWA-negative patients was elevated to 5.4% (95% CI: 4.1% to 6.7%). In support of these findings, we analyzed published data from the Multicenter Automatic Defibrillator Trial II (MADIT II) and Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) trials and determined that in those trials only 32% of patients who received appropriate ICD therapy averted an SCD. Conclusion: This study found that MTWA testing using the spectral analytic method provides an accurate means of predicting VTEs in primary prevention patients without implanted ICDs; in particular, the event rate is very low among such patients with a negative MTWA test. In prospective trials of ICD therapy, the number of patients receiving appropriate ICD therapy greatly exceeds the number of patients who avert SCD as a result of ICD therapy. In trials involving patients with implanted ICDs, these excess appropriate ICD therapies seem to distribute randomly between MTWA-negative and MTWA-nonnegative patients, obscuring the predictive accuracy of MTWA for SCD. Appropriate ICD therapy is an unreliable surrogate end point for SCD

    On the generalized Freedman-Townsend model

    Full text link
    Consistent interactions that can be added to a free, Abelian gauge theory comprising a finite collection of BF models and a finite set of two-form gauge fields (with the Lagrangian action written in first-order form as a sum of Abelian Freedman-Townsend models) are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of smoothness in the coupling constant, locality, Lorentz covariance, and Poincare invariance of the interactions, supplemented with the requirement on the preservation of the number of derivatives on each field with respect to the free theory, we obtain that the deformation procedure modifies the Lagrangian action, the gauge transformations as well as the accompanying algebra. The interacting Lagrangian action contains a generalized version of non-Abelian Freedman-Townsend model. The consistency of interactions to all orders in the coupling constant unfolds certain equations, which are shown to have solutions.Comment: LaTeX, 62 page

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte

    Topological Field Theories and Geometry of Batalin-Vilkovisky Algebras

    Get PDF
    The algebraic and geometric structures of deformations are analyzed concerning topological field theories of Schwarz type by means of the Batalin-Vilkovisky formalism. Deformations of the Chern-Simons-BF theory in three dimensions induces the Courant algebroid structure on the target space as a sigma model. Deformations of BF theories in nn dimensions are also analyzed. Two dimensional deformed BF theory induces the Poisson structure and three dimensional deformed BF theory induces the Courant algebroid structure on the target space as a sigma model. The deformations of BF theories in nn dimensions induce the structures of Batalin-Vilkovisky algebras on the target space.Comment: 25 page

    Mode-Coupling Theory as a Mean-Field Description of the Glass Transition

    Get PDF
    Mode-coupling theory (MCT) is conjectured to be a mean-field description of dynamics of the structural glass transition and the replica theory to be its thermodynamic counterpart. However, the relationship between the two theories remains controversial and quantitative comparison is lacking. In this Letter, we investigate MCT for monatomic hard sphere fluids at arbitrary dimensions above three and compare the results with replica theory. We find grave discrepancies between the predictions of two theories. While MCT describes the nonergodic parameter quantitatively better than the replica theory in three dimension, it predicts a completely different dimension dependence of the dynamical transition point. We find it to be due to the pathological behavior of the nonergodic parameters derived from MCT, which exhibit negative tails in real space at high dimensions.Comment: 5 pages, to appear in Phys. Rev. Lett.: Typos have been correcte

    Self-assembly of parallel atomic wires and periodic clusters of silicon on a vicinal Si(111) surface

    Full text link
    Silicon self-assembly at step edges in the initial stage of homoepitaxial growth on a vicinal Si(111) surface is studied by scanning tunneling microscopy (STM). The resulting atomic structures change dramatically from a parallel array of 0.7 nm wide wires to one dimensionally aligned periodic clusters of the diameter ~ 2 nm and periodicity 2.7 nm in the very narrow range of growth temperatures between 400 and 300 C. These nanostructures are expected to play an important role in future development of silicon quantum computers. Mechanisms leading to such distinct structures are discussed.Comment: Accepted for publication in Phys. Rev. Lett. Numbers of pages and figures are 13 and 3, respectivel
    • 

    corecore