740 research outputs found
Passive and active seismic isolation for gravitational radiation detectors and other instruments
Some new passive and active methods for reducing the effects of seismic disturbances on suspended masses are described, with special reference to gravitational radiation detectors in which differential horizontal motions of two or more suspended test masses are monitored. In these methods it is important to be able to determine horizontal seismic accelerations independent of tilts of the ground. Measurement of changes in inclination of the suspension wire of a test mass, relative to a direction defined by a reference arm of long period of oscillation, makes it possible to carry this out over the frequency range of interest for earth-based gravitational radiation detectors. The signal obtained can then be used to compensate for the effects of seismic disturbances on the test mass if necessary. Alternatively the signal corresponding to horizontal acceleration can be used to move the point from which the test mass is suspended in such a way as to reduce the effect of the seismic disturbance and also damp pendulum motions of the suspended test mass. Experimental work with an active anti-seismic system of this type is described
Laser Interferometric Detectors of Gravitational Waves
A laser interferometric detector of gravitational waves is studied and a
complete solution (to first order in the metric perturbation) of the coupled
Einstein-Maxwell equations with appropriate boundary conditions for the light
beams is determined. The phase shift, the light deflection and the rotation of
the polarization axis induced by gravitational waves are computed. The results
are compared with previous literature, and are shown to hold also for detectors
which are large in comparison with the gravitational wavelength.Comment: 13 pages, LaTe
Microwave Spectroscopy of Cold Rubidium Atoms
The effect of microwave radiation on the resonance fluorescence of a cloud of
cold atoms in a magnetooptical trap is studied. The radiation
frequency was tuned near the hyperfine splitting frequency of rubidium atoms in
the 5S ground state. The microwave field induced magnetic dipole transitions
between the magnetic sublevels of the 5S(F=2) and 5S(F=3) states, resulting in
a change in the fluorescence signal. The resonance fluorescence spectra were
recorded by tuning the microwave radiation frequency. The observed spectra were
found to be substantially dependent on the transition under study and the
frequency of a repump laser used in the cooling scheme.Comment: 6 pages, 4 figure
The Definition of Mach's Principle
Two definitions of Mach's principle are proposed. Both are related to gauge
theory, are universal in scope and amount to formulations of causality that
take into account the relational nature of position, time, and size. One of
them leads directly to general relativity and may have relevance to the problem
of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to
Peter Mittelstaedt's 80th Birthday Festschrift. 30 page
Radiation in Lorentz violating electrodynamics
Synchrotron radiation is analyzed in the classical effective Lorentz
invariance violating model of Myers-Pospelov. Within the full far-field
approximation we compute the electric and magnetic fields, the angular
distribution of the power spectrum and the total emitted power in the m-th
harmonic, as well as the polarization. We find the appearance of rather
unexpected and large amplifying factors, which go together with the otherwise
negligible naive expansion parameter. This opens up the possibility of further
exploring Lorentz invariance violations by synchrotron radiation measurements
in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and
Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200
Test of Special Relativity and Equivalence principle from K Physics
A violation of Local Lorentz Invariance (VLI) and hence the special theory of
relativity or a violation of equivalence principle (VEP) in the Kaon system
can, in principle, induce oscillations between and . We
construct a general formulation in which simultaneous pairwise diagonalization
of mass, momemtum, weak or gravitational eigenstates is not assumed. %and the
maximum attainable %velocities of the velocity eigenstates are different. We
discuss this problem in a general way and point out that, as expected, the VEP
and VLI contributions are indistinguishable. We then insist on the fact that
VEP or VLI can occur even when CPT is conserved. A possible CP violation of the
superweak type induced by VEP or VLI is introduced and discussed. We show that
the general VEP mechanism (or the VLI mechanism, but not both simultaneously),
with or without conserved CPT, could be clearly tested experimentally through
the energy dependence of the mass difference and of ,
, . Constraints imposed by present experiments are
calculated.Comment: Latex, 15 pages, 1 figure, version to appear in Phys. Rev.
Toward catchment hydro-biogeochemical theories
Headwater catchments are the fundamental units that connect the land to the ocean. Hydrological flow and biogeochemical processes are intricately coupled, yet their respective sciences have progressed without much integration. Reaction kinetic theories that prescribe rate dependence on environmental variables (e.g., temperature and water content) have advanced substantially, mostly in well-mixed reactors, columns, and warming experiments without considering the characteristics of hydrological flow at the catchment scale. These theories have shown significant divergence from observations in natural systems. On the other hand, hydrological theories, including transit time theory, have progressed substantially yet have not been incorporated into understanding reactions at the catchment scale. Here we advocate for the development of integrated hydro-biogeochemical theories across gradients of climate, vegetation, and geology conditions. The lack of such theories presents barriers for understanding mechanisms and forecasting the future of the Critical Zone under human- and climate-induced perturbations. Although integration has started and co-located measurements are well under way, tremendous challenges remain. In particular, even in this era of "big data," we are still limited by data and will need to (1) intensify measurements beyond river channels and characterize the vertical connectivity and broadly the shallow and deep subsurface; (2) expand to older water dating beyond the time scales reflected in stable water isotopes; (3) combine the use of reactive solutes, nonreactive tracers, and isotopes; and (4) augment measurements in environments that are undergoing rapid changes. To develop integrated theories, it is essential to (1) engage models at all stages to develop model-informed data collection strategies and to maximize data usage; (2) adopt a "simple but not simplistic," or fit-for-purpose approach to include essential processes in process-based models; (3) blend the use of process-based and data-driven models in the framework of "theory-guided data science." Within the framework of hypothesis testing, model-data fusion can advance integrated theories that mechanistically link catchments' internal structures and external drivers to their functioning. It can not only advance the field of hydro-biogeochemistry, but also enable hind- and fore-casting and serve the society at large. Broadly, future education will need to cultivate thinkers at the intersections of traditional disciplines with hollistic approaches for understanding interacting processes in complex earth systems.This article is categorized under:Science of Water > Method
Challenges of Early Years leadership preparation: a comparison between early and experienced Early Years practitioners in England
Leadership has been under-researched in the Early Years (EY) sector of primary schools in England, especially in leading change for professional development. The aim of this paper is to theorise what the leadership culture for EY practitioners looks like, and how Initial Teacher Training providers and schools are preparing practitioners for leadership. Using case studies of EY practitioners in different stages of their career in primary schools, we offer an insight into their preparedness for leadership in EY, the implication being that leadership training requires an understanding and embedding of the EY culture and context. Interviews with both sample groups allowed for deeper insight into the lived world. Interviews were also conducted with the head teachers to gain an overview of the leadership preparation they provided. The main findings suggest that newer EY practitioners are better prepared for leadership from their university training in comparison to more experienced EY practitioners
The Search for Gravitational Waves
Experiments aimed at searching for gravitational waves from astrophysical
sources have been under development for the last 40 years, but only now are
sensitivities reaching the level where there is a real possibility of
detections being made within the next five years. In this article a history of
detector development will be followed by a description of current detectors
such as LIGO, VIRGO, GEO 600, TAMA 300, Nautilus and Auriga. Preliminary
results from these detectors will be discussed and related to predicted
detection rates for some types of sources. Experimental challenges for detector
design are introduced and discussed in the context of detector developments for
the future.Comment: 21 pages, 7 figures, accepted J. Phys. B: At. Mol. Opt. Phy
- âŠ