1,774 research outputs found

    An extension of the coupled-cluster method: A variational formalism

    Full text link
    A general quantum many-body theory in configuration space is developed by extending the traditional coupled cluter method (CCM) to a variational formalism. Two independent sets of distribution functions are introduced to evaluate the Hamiltonian expectation. An algebraic technique for calculating these distribution functions via two self-consistent sets of equations is given. By comparing with the traditional CCM and with Arponen's extension, it is shown that the former is equivalent to a linear approximation to one set of distribution functions and the later is equivalent to a random-phase approximation to it. In additional to these two approximations, other higher-order approximation schemes within the new formalism are also discussed. As a demonstration, we apply this technique to a quantum antiferromagnetic spin model.Comment: 15 pages. Submitted to Phys. Rev.

    Ground state properties and excitation spectra of non-Galilean invariant interacting Bose systems

    Full text link
    We study the ground state properties and the excitation spectrum of bosons which, in addition to a short-range repulsive two body potential, interact through the exchange of some dispersionless bosonic modes. The latter induces a time dependent (retarded) boson-boson interaction which is attractive in the static limit. Moreover the coupling with dispersionless modes introduces a reference frame for the moving boson system and hence breaks the Galilean invariance of this system. The ground state of such a system is depleted {\it linearly} in the boson density due to the zero point fluctuations driven by the retarded part of the interaction. Both quasiparticle (microscopic) and compressional (macroscopic) sound velocities of the system are studied. The microscopic sound velocity is calculated up the second order in the effective two body interaction in a perturbative treatment, similar to that of Beliaev for the dilute weakly interacting Bose gas. The hydrodynamic equations are used to obtain the macroscopic sound velocity. We show that these velocities are identical within our perturbative approach. We present analytical results for them in terms of two dimensional parameters -- an effective interaction strength and an adiabaticity parameter -- which characterize the system. We find that due the presence of several competing effects, which determine the speed of the sound of the system, three qualitatively different regimes can be in principle realized in the parameter space and discuss them on physical grounds.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Cell Wall-Associated Proteases of Streptococcus cremoris Wg2

    Get PDF
    Two components of the proteolytic system, proteins A and B, have been studied in Streptococcus cremoris Wg2 by immunological methods. The components could not be separated by standard chromatography techniques because both proteins had almost identical molecular weights (about 140,000) and isoelectric points (pH 4.5). Specific antibodies were raised against proteins A and B by excision of the different immunoprecipitates from crossed immunoelectrophoresis gels. With these antibodies, protein A or B was removed from solutions containing both proteins. The purified proteins A and B possessed proteolytic activity and were inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. Each of these proteins accounted for approximately 50% of the total proteolytic activity isolated from S. cremoris Wg2. The specific antibodies against the proteases were also used for immuno-gold labeling studies. The proteases were clearly seen to be located at the outside of the cell wall. The proteases had the same location when the genetic information coding for the proteases was cloned in Streptococcus lactis and Bacillus subtilis

    Timescale Dependence of Aeolian Sand Flux Observations Under Atmospheric Turbulence

    Get PDF
    The transport of sand in saltation is driven by the persistently unsteady stresses exerted by turbulent winds. Based on coupled high-frequency observations of wind velocity and sand flux on a desert dune during intermittent saltation, we show here how observations of saltation by natural winds depend significantly on the timescale and method used for determining shear stress and sand flux. The correlation between sand flux and excess shear stress (stress above a threshold value) systematically improves for longer averaging timescale, T, and is better for stress determined by the law-of-the-wall versus the Reynolds stress method. Fitting parameters for the stress-flux relationship do not converge with increasing T, which may be explained by the nonstationary nature of wind velocity statistics. We show how it may be possible, based on the scale-dependent statistics of stress fluctuations, to rescale saltation flux predictions for wind observations made at different timescales. However, our observations indicate hysteresis and time lags in thresholds for initiation and cessation of saltation, which complicate threshold-based approaches to predicting sediment transport at different timescales

    Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen

    Get PDF
    Patients with cirrhosis have hemostatic changes, which may contribute to a risk of thrombosis. This in vitro study compares clot formation and structure between patients and healthy subjects. Clot formation is delayed in patients; ultimately, however, clot permeability is decreased. The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis. Background and Objectives: Patients with cirrhosis can be at risk of thrombotic complications due to an imbalance between hemostatic components. However, little is known on how the disease affects clot generation or how alterations in the structure of fibrin clots may affect the hemostatic function of these patients. Methods: We investigated the formation and structure of clots generated with plasma and purified fibrinogen of 42 patients with cirrhosis. Clots generated with plasma and fibrinogen of 29 healthy volunteers were studied for comparison. Clot formation and structure were assessed by turbidity, permeation studies, confocal laser and scanning electron microscopy (SEM). The extent of fibrinogen oxidation was assessed by measuring the carbonyl content of purified fibrinogen samples. Results: Tissue factor and thrombin-induced clotting of plasma was delayed in patients. The clotting rate was also decreased, but change in turbidity, fibrin density and fiber thickness were largely comparable to healthy volunteers. Conversely, clot permeability was significantly decreased in patients. When clots were generated with purified fibrinogen, differences in clot formation and structure similar to those in plasma were found. The carbonyl content was increased in patient fibrinogen and correlated with disease severity and clot permeability. Conclusions: Delayed clot formation in cirrhosis ultimately results in decreased clot permeability. Similar alterations in clots generated with purified fibrinogen suggest that modifications of the molecule are (partly) responsible. Taken together, these findings are indicative of hypercoagulable features of clots of patients with cirrhosis, which may explain the increased risk of thrombosis associated with this condition

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.
    • …
    corecore