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1 • INTRODUCTION 

A multichannel reflectometer for JET [1 ,2,3] is described to measure 

density fluctuations and n (r). The diagnostic is under construction at FOM e 
and offers the following features: 

1. Twelve channels in the frequency range of 18 - 80 GHz (corresponding 

electron densities to be probed of 4,10 1
' to 8.10 19 m). 

2. Measurement of plasma movements and determination of the direction of 

these movements in the fixed frequency mode (insensitive to signal 

amplitude variations). 

3, Profile measurements with high resolution in the swept frequency mode 

(insensitive to signal amplitude variations). 

4. Mode switching from fixed to swept frequency without restraint. 

5. Raw interference signal outputs (homodyne) followed by computer control­

led band-pass filters. 

6. Automatic data recording and handling.· 

7. High sensitivity (max. acceptable loss 105 dB, with S/N 

/if = 1 MHz). 

25 dB, and 

8. Distance calibration using the inner wall of the vacuum vessel, 

9. Modular set-up. 
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2. PRINCIPLE OF THE HETERODYNE REFLECTOMETER 

The JET multichannel reflectometer diagnostic KG3 employs 12 micro­

wave sources and heterodyne detection systems in the frequency range of 

18-80 GHz. The principle of the heterodyne reflectometer is shown in Fig. 1. 
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Fig.1. Heterodyne reflectometer. 

The microwave source (osc. 1) transmits a wave toward the plasma, 

which is reflected by the critical density layer into the antenna of the 

heterodyne receiver. A part of the transmitted signal is split off to the 

reference waveguide. The frequencies of the reflected signal from the 

plasma and that from the reference waveguide are converted to 10 MHz using 

the local oscillator (LO, osc. 2) and the two mixers. Both the source and 

LO are Gunn oscillators. A phase lock loop (PLL) [4,5) maintains a frequency 

difference (the IF) of 10 MHz between the source and LO, even when the 

source frequency is swept to perform a density profile measurement. The 

maximum 6F/6t is 1000 MHz/ms. 
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The IF signal measured, at the reference mixer, with a Hewlett 

Packard spectrum analyzer is given in Figs 2 and 3, The first graph shows 

the IF signal in the unlocked state and the second graph shows the locked 

state of the PLL. 
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Fig. 2. IF signal in the unlocked state. 
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Fig. 3, IF signal in the locked state. 
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The fringe counter monitors the direction and amplitude of the 

movement of the critical density layer. Since the signal-to-noise (SIN) 

ratio of the heterodyne system is high, the resolution is only defined by 

the chosen fringe counter configuration and is 1 /32 of the relevant wave­

length. 

When the source frequency (fl) is swept, a phase shift is generated 

which is proportional to the path-length difference in the arms of the 

reflectometer. This path-length difference is measured by the period coun­

ter with an effective resolution of less than 30 mm. The path-length dif­

ference can be calibrated simply if a signal reflected from the inner wall 

of the vacuum vessel can be measured. 

The coherent detector will convert the two mixer signals to the D.C. 

intermediate frequency (homodyne) to follow density fluctuations, both 

amplitude and phase sensitive. 

The measuring systems are described in more detail in Section 6 

(page11). 
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3. SCHEMATIC OVERVIEW OF THE MICROWAVE SYSTEM 

An overview of the 12-channel reflectometer microwave hardware is 

given in Fig. 4. 
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Fig. 4. Overview of the microwave system. 
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The combiner and separator system, the channel dropping filters and 

the antennae are designed and built by ERA Technology Ltd (UK). The 

source and detection modules are described in Sections 4 and 5. 

The multichannel reflectometer employs four different reference 

waveguides. The sources are grouped together with channel dropping filters 

using waveguide bands WG20, WG22, WG24 and WG26. The reference guides are 

built in WG18. All bends are in fundamental waveguide with tapers to WG18. 

The signals from the four reference waveguides are split up with 3 dB 

directional couplers to the 12 reference detectors. The losses in the 

reference waveguides are below 30 dB. Thermal waveguide-expansion effects 

are negligible. 
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4. SOURCE MODULES 

Twelve Gunn oscillators are employed as the sources (Hughes 4727xH). 

Table 1 gives the centre frequencies of the Gunn oscillators with the 

applied waveguide and flange number. 

Table 1 

FREQ. (GHz) WAVEGUIDE FLANGE 

18. 6' 24 WG20 UG-595/U 

29, 34, 39 WG22 UG-599/U 

45, 50, 57 WG24 UG-383/U 

63, 69, 75, 80 WG26 UG-387/U 

The Gunn oscillators (Fig. 5) are electronically tuneable over a 

band of 1 GHz, and have a minimum output power of 40 mW. 
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Fig. 5. Source module. 
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The exact frequencies can be read with the control program from the 

frequency/varactor voltage characteristics stored in the computer. The fre­

quency/voltage characteristics are linear over a frequency range of 200 MHz 

within a few percent. When the reflectometer is working in the frequency 

sweep mode, a software correction can be made on the frequency/voltage 

characteristic. Temperature controllers will keep the centre frequencies of 

the sources stable within + 10 MHz. 
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5. HETERODYNE RECEIVER MODULES 

Figure 6 shows the heterodyne receiver module. 
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Fig. 6. Heterodyne receiver module. 
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The mixers are Hughes ( 47 41 xH) planar crossbar mixers using GaAs 

beam lead diodes which yield a conversion loss of less than 6 dB. The 

minimum detectable power with a SIN ratio of 100/1 and a bandwidth of 1 MHz 

is 1.10- 12 W. This is about 105 dB under the power level of the sources. 

The LO power can be set with the attenuators. Two attenuators and an 

isolator are employed to provide maximum isolation between the reference 

and the signal. The reference mixer is followed by a wideband 40 dB 

amplifier with two outputs; one for the PLL circuit and the other for the 

1 0 MHz reference. The signal detector, mixer 2, is followed by a manually 

controlled and remotely monitored 10 MHz IF amplifier with 2 MHz bandwidth 

and voltage gains of O, 10, 20 and 30 dB. 
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6. CONTROL AND DATA ACQUISITION 

The scheme of the control and data acquisition is given in Fig. 7. 
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Fig. 7. Control and data acquisition. 
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6. 1 Control 

All relevant functions associated with the operation of the 

multichannel reflectometer are controlled and monitored via CODAS, the JET 

computer system. Monitor signals and switches are controlled via the line 

surveyor/driver module CLS2 via input/output cards ULS1 ,2 and ULD1. The 

varactor voltage of the Gunn oscillators (sources) are measured with a 

scanning ADC, the CAD1. The SICOS filter modules are controlled and moni­

tored with the CTR3 interface, using RS232. 

6.2 Data acquisition 

The data acquisition system measure, digitizes and stores all relevant 

settings of the multichannel reflectometer diagnostic KG3. 

There are two modes of operation: 

1 • the fixed frequency mode, and 

2. the swept frequency mode; 

and three measuring systems: 

1. the fringe counter, 

2. the period counter, and 

3. the coherent detector. 
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The CAMAC dual fringe counters CPD3 measure the direction and 

amplitude of plasma movements (Fig. 8). Each channel (A and B) can be 

enabled or disabled individually. The phase shift, during each sample time, 

will be converted to two 16 bit data words (channel A and B) which will be 

multiplexed and written into a 64 k memory CME5 (Lecroy dual-port memory 

module, model MM8206/n). 
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Fig. 8. Fringe counter system. 

The fraction of the fringe, measured with an ADC, is stored in 6 

bits and the fringes in 8 bits, both in 2' s complement (Fig. 9). The most 

significant bit contains the channel information. The resolution is 1/32 of 

a fringe. A time sequence generator CPG3 (Culham) controls the sample rate. 
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Fig. 9. Fringe counter data word. 
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6,2,2 Period counter --------------

Profile measurements can be made in the swept frequency mode using 

the period counter CTD3 (Figs. 10,11 ), 
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Fig. 10, Swept frequency mode. 

In the simplified situation where the plasma density layer is a 

ideal mirror, the length difference between the reference and the plasma 

path is given by: 

where: 
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The period counters are devided into two parts (period detectors and 

counters) with low-pass filters between the sections to filter out plasma 

MHD instabilities (Fig. 11 ). 
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Fig. 11. Period counter system. 

The CAMAC dual period counters (CTD3) can be pre-conditioned in the 

following way. The CAMAC period counters CTD3 are dual modules (A and B) in 

which each channel can be enabled or disabled individually. A dead time can 

be set from 1 to 255 x 20 µs with 8 bits to accomodate the filter delay. 

The clock frequency can be set in steps of 2x from 1.25 MHz to 20 MHz. With 

the different clock frequency settings, the maximum accuracy of the period 

counter can be chosen at a certain selected sweep time. The counter of the 

CTD3 starts at the up (c.q. down) of the timing pulse. At the first zero­

crossing after the dead time, the counted number is stored in data word t 1 

(c.q. t,), the counting goes on until the end of one period. 
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The second time measured is stored in data word t 2 (c.q. t,). This approach 

is chosen in order to correct the measurement for the unlinearities in the 

frequency/varactor-voltage characteristics of the Gunn oscillators which 

are stored in the computer memory. The frequency/voltage characteristics 

can be accurately measured with a hp 71 200A spectrum analyzer and a 16 bit 

ADC under computer control. 

The times measured when the source is swept up and down in frequency 

are stored in the memory CME5 in four 16 bit data words. The most signifi­

cant bit in each word will identify the channel (A or B) (Fig. 12). 

MSB 
LSB 

+ '-----------period data----------' 
channel 15 bit 

A/B 

Fig. 12. Period counter data word. 

The Gunn oscillator frequency modulator, associated with the period 

counter, is controllable via CODAS and yields the following features: 

1. The sweep time of the modulator can be set in steps of 2x from 200 µs to 

25.6 ms for a single sweep. 

2. On a trigger from the time sequence generator CPG3 an up and a down ramp 

are performed. 

3. The amplitude of the triangular voltage can be set with 8 bit accuracy 

to maximum 10 V. 
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The analogue signal from the coherent detectors (bandwidth 1 MHz), 

are passed through programmable equal time delay filters and amplifiers, 

and are recorded by 12 bit analogue-to-digital converters CAD4' s (Lecroy 

8210) and memories CME4 1 s (Lecroy 8800/12) (Fig. 13). 
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Fig. 13. Coherent detector system. 

A time sequence generator CPG3 controls the sampling rate (up to 1 

MHz). The data can be used to study plasma fluctuations. 
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