21,895 research outputs found
Performance of reflecting silica heat shields during entry into Saturn and Uranus
The performance of silica heat shields in the outer planet atmospheres is analyzed and described in a set of differential equations. Results are presented and discussed
Analysis of coastal upwelling and the production of a biomass
The coastal upwelling index derived from weather data is input to a set of coupled differential equations that describe the production of a biomass. The curl of the wind stress vector is discussed in the context of the physical extent of the upwelling structure. An analogy between temperature and biomass concentration in the upwelled coastal water is derived and the relationship is quantified. The use of remote satellite or airborne sensing to obtain biomass rate production coefficients is considered
Maximal supergravity in three dimensions: supergeometry and differential forms
The maximal supergravity theory in three dimensions, which has local SO(16)
and rigid symmetries, is discussed in a superspace setting starting from
an off-shell superconformal structure. The on-shell theory is obtained by
imposing further constraints. It is essentially a non-linear sigma model that
induces a Poincar\'e supergeometry that is described in detail. The possible
-form field strengths, for , are explicitly constructed using
supersymmetry and . The gauged theory is also discussed.Comment: 27 pages. Small changes to the text; added reference
L-branes
The superembedding approach to -branes is used to study a class of
-branes which have linear multiplets on the worldvolume. We refer to these
branes as L-branes. Although linear multiplets are related to scalar multiplets
(with 4 or 8 supersymmetries) by dualising one of the scalars of the latter to
a -form field strength, in many geometrical situations it is the linear
multiplet version which arises naturally. Furthermore, in the case of 8
supersymmetries, the linear multiplet is off-shell in contrast to the scalar
multiplet. The dynamics of the L-branes are obtained by using a systematic
procedure for constructing the Green-Schwarz action from the superembedding
formalism. This action has a Dirac-Born-Infeld type structure for the -form.
In addition, a set of equations of motion is postulated directly in superspace,
and is shown to agree with the Green-Schwarz equations of motion.Comment: revised version, minor changes, references added, 22 pages, no
figures, LaTe
Influence of an aperture on the performance of a two-degree-of-freedom iron-cored spherical permanent-magnet actuator
Abstract—This paper describes a computational and experimental study of a two-degree-of-freedom spherical permanent-magnet actuator equipped with an iron stator. In particular, it considers the effect of introducing an aperture in the stator core to facilitate access to the armature. The resultant magnetic field distribution in the region occupied by the stator windings, the net unbalanced radial force, and the resulting reluctance torque are determined by three-dimensional magnetostatic finite-element
analysis. The predicted reluctance torque is validated experimentally, and its implications on actuator performance are described
Volume-reflecting dielectric heat shield
White, volume-reflecting dielectric material absorbs essentially none of the incident radiant energy, and continues to reflect even though in severe environment its surface is melted and is being vaporized. Process of overall reflectance in dielectric material, involving internal refractions and reflections, is similar to process of reflection in paints
Recommended from our members
Specialising finite domain programs with polyhedra
A procedure is described for tightening domain constraints of finite domain logic programs by applying a static analysis based on convex polyhedra. Individual finite domain constraints are over-approximated by polyhedra to describe the solution space over ninteger variables as an n dimensional polyhedron. This polyhedron is then approximated, using projection, as an n dimensional bounding box that can be used to specialise and improve the domain constraints. The analysis can be implemented straightforwardly and an empirical evaluation of the specialisation technique is given
Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.
The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events
- …
