949 research outputs found

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2−x_{2-x}Srx_xCuO4_4 and La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2−x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat

    Evidence for a Square-Square Vortex Lattice Transition in a High-Tc Cuprate Superconductor

    Full text link
    Using sound velocity and attenuation measurements in high magnetic fields, we identify a new transition in the vortex lattice state of La2−xSrxCuO4. The transition, observed in magnetic fields exceeding 35 T and temperatures far below zero field Tc, is detected in the compression modulus of the vortex lattice, at a doping level of x=p=0.17. Our theoretical analysis based on Eilenberger’s theory of the vortex lattice shows that the transition corresponds to the long-sought 45° rotation of the square vortex lattice, predicted to occur in d-wave superconductors near a van Hove singularity

    Competition between spin ordering and superconductivity near the pseudogap boundary in La2−xSrxCuO4: Insights from NMR

    Full text link
    When superconductivity is suppressed by high magnetic fields in La2−xSrxCuO4, striped antiferromagnetic (AFM) order becomes the magnetic ground state of the entire pseudogap regime, up to its end at the doping p∗ [Frachet, Vinograd et al., Nat. Phys. 16, 1064 (2020)]. Glass-like freezing of this state is detected in 139La NMR measurements of the spin-lattice relaxation rate T−11. Here, we present a quantitative analysis of T−11 data in the hole-doping range p=x=0.12−0.171, based on the Bloembergen-Purcell-Pound (BPP) theory, modified to include statistical distribution of parameters arising from strong spatial inhomogeneity. We observe spin fluctuations to slow down at temperatures T near the onset of static charge order and, overall, the effect of the field B may be seen as equivalent to strengthening stripe order by approaching p=0.12 doping. In details, however, our analysis reveals significant departure from usual field-induced magnetic transitions. The continuous growth of the amplitude of the fluctuating moment with increasing B suggests a nearly-critical state in the B→0 limit, with very weak quasistatic moments possibly confined in small areas like vortex cores. Further, the nucleation of spin order in the vortex cores is shown to account quantitatively for both the value and the p dependence of a field scale characterizing bulk spin freezing. The correlation time of the fluctuating moment appears to depend exponentially on B/T (over the investigated range). This explains the timescale dependence of various experimental manifestations, including why, for transport measurements, the AFM moments may be considered static over a considerable range of B and T. These results make the high-field magnetic ground state up to p∗ an integral part of the discussion on putative quantum criticality

    Influence of oxygen-coordination number on the electronic structure of single-layer La-based cuprates

    Full text link
    We present an angle-resolved photoemission spectroscopy study of the single-layer T*-type structured cuprate SmLa1−x_{1-x}Srx_xCuO4_4 with unique five-fold pyramidal oxygen coordination. Upon varying oxygen content, T*-SmLa1−x_{1-x}Srx_xCuO4_4 evolved from a Mott-insulating to a metallic state where the Luttinger sum rule breaks down under the assumption of a large hole-like Fermi surface. This is in contrast with the known doping evolution of the structural isomer La2−x_{2-x}Srx_xCuO4_4 with six-fold octahedral coordination. In addition, quantitatively characterized Fermi surface suggests that the empirical TcT_\mathrm{c} rule for octahedral oxygen-coordination systems does not apply to T*-SmLa1−x_{1-x}Srx_xCuO4_4. The present results highlight unique properties of the T*-type cuprates possibly rooted in its oxygen coordination, and necessitate thorough investigation with careful evaluation of disorder effects.Comment: Accepted for publication in Phys. Rev.

    Decoupling of Lattice and Orbital Degrees of Freedom in an Iron-Pnictide Superconductor

    Full text link
    The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electronic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature (Tort∼250T_\mathrm{ort} \sim 250 K), which coexists with superconductivity (Tc=25T_\mathrm{c} = 25 K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.Comment: SI available upon reques
    • …
    corecore