100 research outputs found

    Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    Get PDF
    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission

    Mass spectrometers and atomic oxygen

    Get PDF
    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized

    High intensity 5 eV O-atom exposure facility for material degradation studies

    Get PDF
    An atomic oxygen exposure facility was developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in low Earth orbit. The studies that are being undertaken will provide: (1) absolute reaction cross sections for the engineering design problems, (2) formulations of reaction mechanisms for use in the selection of suitable existing materials and the design of new more resistant ones, and (3) the calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low Earth orbit to ground based investigations. The facility consists of a CW laser sustained discharge source of O-atoms, an atomic beam formation and diagnostics system, a spinning rotor viscometer, and provision for using the system for calibration of actual flight instruments

    Hollow pellet injection for magnetic fusion

    Full text link
    Precise delivery of mass to burning plasmas is a problem of growing interest in magnetic fusion. The answers to how much mass is necessary and sufficient can vary depending on parameters such as the type of atoms involved, the type of applications, plasma conditions, mass injector, and injection timing. Motivated by edge localized mode (ELM) control in H-mode plasmas, disruption mitigation and other applications in magnetic fusion, we report progress and new possibilities in mass delivery based on hollow pellets. Here, a hollow pellet refers to a spherical shell mass structure with a hollow core. Based on an empirical model of pellet ablation, coupled with BOUT++ simulations of ELM triggering threshold, hollow pellets are found to be attractive in comparison with solid spheres for ELM control. By using hollow pellets, it is possible to tailor mass delivery to certain regions of edge plasmas while minimizing core contamination and reducing the total amount of mass needed. We also include experimental progress in mass delivery experiments, in-situ diagnostics and hollow pellet fabrication, and emphasize new experimental possibilities for ELM control based on hollow pellets. A related application is the disruption mitigation scheme using powder encapsulated inside hollow shells. Further experiments will also help to resolve known discrepancies between theoretical predictions and experiments in using mass injection for ELM control and lead to better predictive models for ELM stability and triggering.Comment: Manuscript prepared for reviews by {\it Nuclear Fusion}, following the initial presentation in the 27th IAEA FEC, Gandhinagar, India, Oct. 22 - 27, 201

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM

    Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection

    Full text link
    The precise value of the mean neutron lifetime, τn\tau_n, plays an important role in nuclear and particle physics and cosmology. It is a key input for predicting the ratio of protons to helium atoms in the primordial universe and is used to search for new physics beyond the Standard Model of particle physics. There is a 3.9 standard deviation discrepancy between τn\tau_n measured by counting the decay rate of free neutrons in a beam (887.7 ±\pm 2.2 s) and by counting surviving ultracold neutrons stored for different storage times in a material trap (878.5±\pm0.8 s). The experiment described here eliminates loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls and neutrons in quasi-stable orbits rapidly exit the trap. As a result of this approach and the use of a new in situ neutron detector, the lifetime reported here (877.7 ±\pm 0.7 (stat) +0.4/-0.2 (sys) s) is the first modern measurement of τn\tau_n that does not require corrections larger than the quoted uncertainties.Comment: 9 pages, 3 figures, 2 table

    Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective

    Get PDF
    The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice

    Status of the UCNÏ„ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ
    • …
    corecore