5 research outputs found

    Real-Time Antimicrobial Susceptibility Assay of Planktonic and Biofilm Bacteria by Isothermal Microcalorimetry

    No full text
    Most antimicrobials currently used in the clinical practice are tested as growth inhibitors against free-floating microorganisms in a liquid suspension, rather than against sessile cells constituting biofilms. Hence, reliable, fast, and reproducible methods for assessing biofilm susceptibility to antimicrobials are strongly needed. Isothermal microcalorimetry (IMC) is a nondestructive sensitive technique that allows for the real-time monitoring of microbial viability in the presence or absence of antimicrobial compounds. Therefore, the efficacy of specific antimicrobials, alone or in combination, may be promptly validated supporting the development of new drugs and avoiding the administration of ineffective therapies. Furthermore, the susceptibility of both planktonic and biofilm cells to antimicrobials can be conveniently assessed without the need for elaborated staining procedures and under nontoxic working conditions. Quantitative data regarding the antimicrobial effect against different strains might be collected by monitoring the microbial cell replication, and, more importantly, a dose-dependent activity can be efficiently detected by measuring the delay and decrease in the heat flow peak of the treated samples. A limitation of IMC for anti-biofilm susceptibility test is the inability to directly quantify the non-replicating cells in the biofilm or the total biomass. However, as IMC is a nondestructive method, the samples can be also analyzed by using different techniques, acquiring more information complementary to calorimetric data. IMC finds application also for the investigation of antibiotic eluting kinetics from different biomaterials, as well as for studying bacteriophages activity against planktonic and biofilm bacteria. Thus, the wide applicability of this ultra-sensitive and automated technique provides a further advance in the field of clinical microbiology and biomedical sciences

    Quantification of vital adherent Streptococcus sanguinis cells on protein-coated titanium after disinfectant treatment

    No full text
    The quantification of vital adherent bacteria is challenging, especially when efficacy of antimicrobial agents is to be evaluated. In this study three different methods were compared in order to quantify vital adherent Streptococcus sanguinis cells after exposure to disinfectants. An anaerobic flow chamber model accomplished initial adhesion of S. sanguinis on protein-coated titanium. Effects of chlorhexidine, Betadine®, Octenidol®, and ProntOral® were assessed by quantifying vital cells using Live/Dead BacLight?, conventional culturing and isothermal microcalorimetry (IMC). Results were analysed by Kruskal-Wallis one-way analysis of variance. Live/dead staining revealed highest vital cell counts (P > 0.05) and demonstrated dose-dependent effect for all disinfectants. Microcalorimetry showed time-delayed heat flow peaks that were proportioned to the remaining number of viable cells. Over 48 h there was no difference in total heat between treated and untreated samples (P < 0.05), indicating equivalent numbers of bacteria were created and disinfectants delayed growth but did not eliminate it. In conclusion, contrary to culturing, live/dead staining enables detection of cells that may be viable but non-cultivable. Microcalorimetry allows unique evaluation of relative disinfectant effects by quantifying differences in time delay of regrowth of remaining vital cells

    Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology

    No full text
    corecore