13 research outputs found

    Speckle-Based X-Ray Dark-Field Tomography of an Attenuating Object

    No full text
    Spatial resolution in standard phase-contrast X-ray imaging is limited by the finite number and size of detector pixels. This limits the size of features that can be seen directly in projection images or tomographic reconstructions. Dark-field imaging allows information regarding such features to be obtained, as the reconstructed image is a measure of the position-dependent small-angle X-ray scattering of incident rays from the unresolved microstructure. In this paper we utilize an intrinsic speckle-tracking-based X-ray imaging technique to obtain the effective dark-field signal from a wood sample. This effective dark-field signal is extracted using a Fokker-Planck type formalism, which models the deformations of illuminating reference-beam speckles due to both coherent and diffusive scatter from the sample. We here assume that (a) small-angle scattering fans at the exit surface of the sample are rotationally symmetric, and (b) the object has both attenuating and refractive properties. The associated inverse problem, of extracting the effective dark-field signal, is numerically stabilised using a "weighted determinants"approach. Effective dark-field projection images are presented, as well as the dark-field tomographic reconstructions obtained using Fokker-Planck implicit speckle-tracking

    Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides

    Get PDF
    Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis

    A Synthetic Roman Space Telescope High-Latitude Time-Domain Survey: Supernovae in the Deep Field

    Full text link
    NASA will launch the Nancy Grace Roman Space Telescope (Roman) in the second half of this decade, which will allow for a generation-defining measurement of dark energy through multiple probes, including Type Ia supernovae (SNe Ia). To improve decisions on survey strategy, we have created the first simulations of realistic Roman images that include artificial SNe Ia injected as point sources in the images. Our analysis combines work done on Roman simulations for weak gravitational lensing studies as well as catalog-level simulations of SN samples. We have created a time series of images over two years containing \sim 1,050 SNe Ia, covering a 1 square degree subarea of a planned 5 square degree deep survey. We have released these images publicly for community use along with input catalogs of all injected sources. We create secondary products from these images by generating coadded images and demonstrating recovery of transient sources using image subtraction. We perform first-use analyses on these images in order to measure galaxy-detection efficiency, point source-detection efficiency, and host-galaxy association biases. The simulated images can be found here: https://roman.ipac.caltech.edu/sims/SN_Survey_Image_sim.html.Comment: 12 pages, 12 figures. Submitted to MNRAS. For simulated images see https://roman.ipac.caltech.edu/sims/SN_Survey_Image_sim.htm

    Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides

    Get PDF
    Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different β-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.</p
    corecore