1,351 research outputs found

    Evaluation of a subscale internally insulated fiber-glass propellant tank for liquid hydrogen

    Get PDF
    Subscale internally insulated fiberglass reinforced plastics, propellant tank for liquid hydroge

    Comparison of inlet suppressor data with approximate theory based on cutoff ratio

    Get PDF
    Inlet suppressor far-field directivity suppression was quantitatively compared with that predicted using an approximate linear design and evaluation method based upon mode cutoff ratio. The experimental data was obtained using a series of cylindrical point-reacting inlet liners on a YF102 engine. The theoretical prediction program is based upon simplified sound propagation concepts derived from exact calculations. These indicate that all of the controlling phenomenon can be approximately correlated with mode cutoff ratio which itself is intimately related to the angles of propagation within the duct. The theory-data comparisons are intended to point out possible deficiencies in the approximate theory which may be corrected. After all theoretical refinements are made, then empirical corrections can be applied

    Unsteady blade pressure measurements for the SR-7A propeller at cruise conditions

    Get PDF
    The unsteady blade surface pressures were measured on the SR-7A propeller. The freestream Mach no., inflow angle, and advance ratio were varied while measurements were made at nine blade stations. At a freestream Mach no. of 0.8, the data in terms of unsteady pressure coefficient vs. azimuth angle are compared to an unsteady 3-D Euler solution, yielding very encouraging results. The code predicts the shape (phase) of the waveform very well, while the magnitude is over-predicted in many cases. At tunnel Mach nos. below 0.6, an unusually large response on the suction surface at 0.15 chord and 0.88 radius was observed. The behavior of this response suggests the presence of a leading edge vortex. The midchord measuring stations on the suction surface exhibit a response that leads the forcing function while most other locations show a phase lag

    Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller

    Get PDF
    Unsteady blade surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aeroelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations

    Full-scale engine tests of bulk absorber acoustic inlet treatment

    Get PDF
    Three different densities of Keviar bulk absorber fan inlet treatment were tested on a YF 102 turbofan engine. This bulk absorber material may have potential for flight application. Farfield noise measurements were made and the attenuation properties of the three treatment densities were compared. In addition, the best bulk treatment was compared to the best single degree of freedom, SDOF (honeycomb and perforated cover sheet) treatment from another investigation. Although the density was varied over a large range, (3 to 1) the effect on attenuation was small. The highest density treatment, 11.8 lb/cubic ft., had a somewhat broader attenuation bandwidth. The comparison of the best bulk and SDOF treatments showed the bulk to have a much greater attenuation bandwidth. At the design frequency both types of treatment had almost equal performance

    Acoustic, performance, and wake survey measurements of a lobed velocity-decayer nozzle installed on a quieted TF-34 turbofan engine

    Get PDF
    Results for three velocity decayer nozzle configurations are compared with those obtained with a separate flow coannular nozzle tested on the same quieted turbofan engine. Peak sideline noise, which occurred 110 degrees from the inlet, was 2 to 4 db louder than with the coannular nozzle at the same ideal effective exhaust velocity and 8 to 11 db louder at the same thrust level. The decayer nozzles produced an increase in loss equivalent to about 4 percent of the engine thrust and also increased the effective exhaust velocity of the engine. The exhaust decayed to 0.35 of its peak velocity, compared with no decay for the coannular nozzle, within 3 equivalent nozzle diameters of the exit. The peak exhaust gas temperature was 400 K lower for the decayer configuration at the same location. The increase in perceived noise level for the decayer nozzles as compared with the coannular nozzle was attributed to the increase in exhaust velocity and the shift in peak spectrum frequency produced by these nozzles

    Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    Get PDF
    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator

    Acoustic evaluation of the Helmholtz resonator treatment in the NASA Lewis 8- by 6-foot supersonic wind tunnel

    Get PDF
    The acoustic consequences of sealing the Helmholtz resonators of the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT) were experimentally evaluated. This resonator sealing was proposed in order to avoid entrapment of hydrogen during tests of advanced hydrogen-fueled engines. The resonators were designed to absorb energy in the 4- to 20-Hz range; thus, this investigation is primarily concerned with infrasound. Limited internal and external noise measurements were made at tunnel Mach numbers ranging from 0.5 to 2.0. Although the resonators were part of the acoustic treatment installed because of a community noise problem their sealing did not seem to indicate a reoccurrence of the problem would result. Two factors were key to this conclusion: (1) A large bulk treatment muffler downstream of the resonators was able to make up for much of the attenuation originally provided by the resonators, and (2) there was no noise source in the tunnel test section. The previous community noise problem occurred when a large ramjet was tested in an open-loop tunnel configuration. If a propulsion system producing high noise levels at frequencies of less than 10 Hz were tested, the conclusion on community noise would have to be reevaluated

    Unsteady blade pressure measurements on a model counterrotation propeller

    Get PDF
    In an exploratory effort an advanced counterrotation propeller instrumented with blade-mounted pressure transducers was tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel at a simulated takeoff and landing speed of Mach 0.20. The propeller's aft diameter was reduced to investigate possible noise reductions resulting from reduced blade row interaction with the tip vortex. The propeller was tested at three blade row spacings at fixed blade setting angles, at the maximum blade row spacing at higher blade setting angles and at propeller axis angles attack to the flow up to + or - 16 deg. A limited number of unsteady blade surface pressure measurements were made on both rotors of the model counterrotation propeller. Emphasis was placed on determining the effects of rotor-rotor interactions on the blade surface pressures. A unique method of processing the pressure signals was developed that enables even weak interaction waveforms and spectra to be separated from the total signal. The interaction on the aft rotor was many times stronger than that on the forward rotor. The fundamental rotor interaction tone exhibited complicated behavior but generally increased with rotational speed and blade setting angle and decreased with rotor spacing. With the propeller axis at an angle to the flow, the phase response of the aft rotor appeared to be significantly affected by the presence of the forward rotor

    Advanced turboprop wing installation effects measured by unsteady blade pressure and noise

    Get PDF
    A single rotation model propeller (SR-7A) was tested at simulated takeoff/approach conditions (Mach 0.2), in the NASA Lewis 9- by 15-Ft Anechoic Wind Tunnel. Both unsteady blade surface pressures and noise measurements were made for a tractor configuration with propeller/straight wing and propeller alone configurations. The angle between the wing chord and propeller axis (droop angle) was varied along with the wing angle of attack to determine the effects on noise and unsteady loading. A method was developed that uses unsteady blade pressure measurements to provide a quantitative indication of propeller inflow conditions, at least for a uniform (across the propeller disk) inflow angle. The wing installation caused a nearly uniform upwash at the propeller inlet as evidenced by the domination of the pressure spectra by the first shaft order. This inflow angle increased at a rate of almost 150 percent of that of the wing angle-of-attack for a propeller-wing spacing of 0.54 wing chords at a constant droop angle. The flyover noise, as measured by the maximum blade passing frequency level, correlates closely with the propeller inflow angle (approx. 0.6 dB per degree of inflow angle) for all droop angles and wing angles of attack tested, including the propeller alone data. Large changes in the unsteady pressure responses on the suction surface of the blade were observed as the advance ratio was varied. The presence of a leading edge vortex may explain this behavior since changes in the location of this vortex would change with loading (advance ratio)
    corecore