5,486 research outputs found

    The pion form factor on the lattice at zero and finite temperature

    Full text link
    We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the consistently O(a) improved current. We calculate the pion form factor for masses down to m_pi = 360 MeV, extract the charge radius, and extrapolate toward the physical pion mass. In the second part, we discuss results for the pion form factor and charge radius at 0.93 T_c and compare with zero temperature results.Comment: Invited talk at the Lightcone 2004 conference, Amsterdam, 16-20 August, 200

    Helicity Amplitudes for Single-Top Production

    Get PDF
    Single top quark production at hadron colliders allows a direct measurement of the top quark charged current coupling. We present the complete tree-level helicity amplitudes for four processes involving the production and semileptonic decay of a single top quark: W-gluon fusion, flavor excitation, s-channel production and W-associated production. For the first three processes we study the quality of the narrow top width approximation. We also examine momentum and angular distributions of some of the final state particles.Comment: 27 pages, 7 figures, final versio

    Log-linear models of petroleum product demand : an international study

    Get PDF
    The purpose of this work is to describe a set of log-linear models of petroleum product demand and to document the estimation results. This effort is part of an overall study to understand and model the world oil market. As results obtained here will be used to construct portions o

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.

    SRA: Fast Removal of General Multipath for ToF Sensors

    Full text link
    A major issue with Time of Flight sensors is the presence of multipath interference. We present Sparse Reflections Analysis (SRA), an algorithm for removing this interference which has two main advantages. First, it allows for very general forms of multipath, including interference with three or more paths, diffuse multipath resulting from Lambertian surfaces, and combinations thereof. SRA removes this general multipath with robust techniques based on L1L_1 optimization. Second, due to a novel dimension reduction, we are able to produce a very fast version of SRA, which is able to run at frame rate. Experimental results on both synthetic data with ground truth, as well as real images of challenging scenes, validate the approach

    A deficit of spatial remapping in constructional apraxia after right-hemisphere stroke

    Get PDF
    This Article is provided by the Brunel Open Access Publising Fund - Copyright @ 2010 Oxford University PressConstructional apraxia refers to the inability of patients to copy accurately drawings or three-dimensional constructions. It is a common disorder after right parietal stroke, often persisting after initial problems such as visuospatial neglect have resolved. However, there has been very little experimental investigation regarding mechanisms that might contribute to the syndrome. Here, we examined whether a key deficit might be failure to integrate visual information correctly from one fixation to the next. Specifically, we tested whether this deficit might concern remapping of spatial locations across saccades. Right-hemisphere stroke patients with constructional apraxia were compared to patients without constructional problems and neurologically healthy controls. Participants judged whether a pattern shifted position (spatial task) or changed in pattern (non-spatial task) across two saccades, compared to a control condition with an equivalent delay but without intervening eye movements. Patients with constructional apraxia were found to be significantly impaired in position judgements with intervening saccades, particularly when the first saccade of the sequence was to the right. The importance of these remapping deficits in constructional apraxia was confirmed through a highly significant correlation between saccade task performance and constructional impairment on standard neuropsychological tasks. A second study revealed that even single saccades to the right can impair constructional apraxia patients’ perception of location shifts. These data are consistent with the view that rightward eye movements result in loss of remembered spatial information from previous fixations, presumably due to constructional apraxia patients’ damage to the right-hemisphere regions involved in remapping locations across saccades. These findings provide the first evidence for a deficit in remapping visual information across saccades underlying right-hemisphere constructional apraxia.European Commission Marie Curie Intra-European Fellowship (011457 to C.R.) and a Wellcome Trust Senior Fellowship (to M.H.)

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Electromagnetic vertex function of the pion at T > 0

    Full text link
    The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of T=0.93TcT = 0.93 T_c. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding O(a){\cal O}(a) improved vector current. The electromagnetic vertex function is extracted for pion masses down to 360MeV360 {\rm MeV} and momentum transfers Q22.7GeV2Q^2 \le 2.7 {\rm GeV}^2.Comment: 17 pages, 8 figure

    Field dependence of magnetization reversal by spin transfer

    Full text link
    We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents
    corecore