5 research outputs found

    Remote COVID-19 Assessment in Primary Care (RECAP) risk prediction tool: derivation and real-world validation studies

    Get PDF
    BACKGROUND: Accurate assessment of COVID-19 severity in the community is essential for patient care and requires COVID-19-specific risk prediction scores adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms, and risk factors, we aimed to develop and validate two COVID-19-specific risk prediction scores. Remote COVID-19 Assessment in Primary Care-General Practice score (RECAP-GP; without peripheral oxygen saturation [SpO2]) and RECAP-oxygen saturation score (RECAP-O2; with SpO2). METHODS: RECAP was a prospective cohort study that used multivariable logistic regression. Data on signs and symptoms (predictors) of disease were collected from community-based patients with suspected COVID-19 via primary care electronic health records and linked with secondary data on hospital admission (outcome) within 28 days of symptom onset. Data sources for RECAP-GP were Oxford-Royal College of General Practitioners Research and Surveillance Centre (RCGP-RSC) primary care practices (development set), northwest London primary care practices (validation set), and the NHS COVID-19 Clinical Assessment Service (CCAS; validation set). The data source for RECAP-O2 was the Doctaly Assist platform (development set and validation set in subsequent sample). The two probabilistic risk prediction models were built by backwards elimination using the development sets and validated by application to the validation datasets. Estimated sample size per model, including the development and validation sets was 2880 people. FINDINGS: Data were available from 8311 individuals. Observations, such as SpO2, were mostly missing in the northwest London, RCGP-RSC, and CCAS data; however, SpO2 was available for 1364 (70·0%) of 1948 patients who used Doctaly. In the final predictive models, RECAP-GP (n=1863) included sex (male and female), age (years), degree of breathlessness (three point scale), temperature symptoms (two point scale), and presence of hypertension (yes or no); the area under the curve was 0·80 (95% CI 0·76-0·85) and on validation the negative predictive value of a low risk designation was 99% (95% CI 98·1-99·2; 1435 of 1453). RECAP-O2 included age (years), degree of breathlessness (two point scale), fatigue (two point scale), and SpO2 at rest (as a percentage); the area under the curve was 0·84 (0·78-0·90) and on validation the negative predictive value of low risk designation was 99% (95% CI 98·9-99·7; 1176 of 1183). INTERPRETATION: Both RECAP models are valid tools to assess COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored and SpO2 is available, RECAP-O2 is useful to assess the need for treatment escalation. FUNDING: Community Jameel and the Imperial College President's Excellence Fund, the Economic and Social Research Council, UK Research and Innovation, and Health Data Research UK

    Remote covid assessment in primary care (RECAP) risk prediction tool: derivation and real-world validation studies

    Get PDF
    AbstractBackgroundAccurate assessment of COVID-19 severity in the community is essential for best patient care and efficient use of services and requires a risk prediction score that is COVID-19 specific and adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms and risk factors, we sought to develop and validate two COVID-19-specific risk prediction scores RECAP-GP (without peripheral oxygen saturation (SpO2)) and RECAP-O2 (with SpO2).MethodsProspective cohort study using multivariable logistic regression for model development. Data on signs and symptoms (model predictors) were collected on community-based patients with suspected COVID-19 via primary care electronic health records systems and linked with secondary data on hospital admission (primary outcome) within 28 days of symptom onset. Data sources: RECAP-GP: Oxford-Royal College of General Practitioners Research and Surveillance Centre (RSC) primary care practices (development), Northwest London (NWL) primary care practices, NHS COVID-19 Clinical Assessment Service (CCAS) (validation). RECAP-O2: Doctaly Assist platform (development, and validation in subsequent sample). Estimated sample size was 2,880 per model.FindingsData were available from 8,311 individuals. Observations, such SpO2, were mostly missing in NWL, RSC, and CCAS data; however, SpO2 was available for around 70% of Doctaly patients. In the final predictive models, RECAP-GP included sex, age, degree of breathlessness, temperature symptoms, and presence of hypertension (Area Under the Curve (AUC): 0.802, Validation Negative Predictive Value (NPV) of ‘low risk’ 98.8%. RECAP-O2 included age, degree of breathlessness, fatigue, and SpO2 at rest (AUC: 0.843), Validation NPV of ‘low risk’ 99.4%.InterpretationBoth RECAP models are a valid tool in the assessment of COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored at home and SpO2 is available, RECAP-O2 is useful to assess the need for further treatment escalation.Research in context panelEvidence before the studyThis study was conceived during the first COVID-19 wave in the UK (March - April 2020), as members of the research team contributed to the development of national clinical guidelines for COVID-19 management in the community and to the Oxford COVID-19 rapid review to track signs and symptoms of COVID-19 internationally. The review was carried out according to Cochrane Collaboration standards for rapid reviews and identified systematic reviews and large-scale observational studies describing the signs and symptoms of COVID-19. Evidence gathered showed worsening of COVID-19 symptoms around the 7th day of disease and challenges in identifying patients with higher likelihood of severity to increase their monitoring. To this end, tools such NEWS2 have been used in the UK to assess COVID-19 patients in primary care, but they do not capture the characteristics of COVID-19 infection and/or are not suitable for community remote assessment. Several COVID-19 risk scores have been developed. QCOVID provides a risk of mortality considering patients’ existing risk factors but does not include acute signs and symptoms. ISARIC 4C Deterioration model has been specifically developed for hospital settings. In England, the NHS has implemented the Oximetry @home strategy to monitor patients with acute COVID-19 deemed at risk (older than 64 years old or with comorbidities) by providing pulse oximeters; however, the criteria for monitoring or for escalation of care have not been validated. There is, therefore, the need to develop a risk prediction score to establish COVID-19 patients’ risk of deterioration to be used in the community for both face to face or remote consultation.Added value of this studyWe developed and validated two COVID-19 specific risk prediction scores. One to be used in the initial remote assessment of patients with acute COVID-19 to assess need for monitoring (RECAP-GP). The second one to assess the need for further treatment escalation and includes peripheral saturation of oxygen among the model predictors (RECAP-O2). To our knowledge, this is the first COVID-19 specific risk prediction score to assess and monitor COVID-19 patients’ risk of deterioration remotely. This will be a valuable resource to complement the use of oximetry in the community clinical decision-making when assessing a patient with acute COVID-19.Implications of all available evidenceTo manage pandemic waves and their demand on healthcare, acute COVID-19 patients require close monitoring in the community and prompt escalation of their treatment. Guidance available so far relies on unvalidated tools and clinician judgement to assess deterioration. COVID-19 specific community-based risk prediction scores such as RECAP may contribute to reducing the uncertainty in the assessment and monitoring of COVID-19 patients, increase safety in clinical practice and improve outcomes by facilitating appropriate treatment escalation.</jats:sec

    A case study on the use of meditation techniques to develop mindfulness in MBA supply chain management students

    No full text
    An increased focus on spirituality and mindfulness in the management education literature has resulted in calls for greater empirical work of a nontraditional nature. Therefore, this research looks to contribute to this growing body of literature by looking at the deployment of a specific aspect of spirituality, mindfulness, in a higher education context in the teaching of a Master of Business Administration (MBA) supply chain management (SCM) module. This research shows that the use of meditation techniques by SCM students can engender mindfulness and increase their attention, awareness, and acceptance. In this case study, students completed a learning journal reflecting their experiences of meditation over a 6-week period. Grounded theory techniques articulated a model of the meditation exercise in this context. The research found a number of expected and unexpected benefits, including students’ ability to focus for longer periods of time. The costs of the exercise, cited only by self-identified skeptical students, included an increase in stress and frustration with the exercise. The subsequent analysis and model show how to improve the techniques and prevent negative outcomes
    corecore