326 research outputs found

    Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions

    Get PDF
    Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity

    Theory and Application of Dissociative Electron Capture in Molecular Identification

    Get PDF
    The coupling of an electron monochromator (EM) to a mass spectrometer (MS) has created a new analytical technique, EM-MS, for the investigation of electrophilic compounds. This method provides a powerful tool for molecular identification of compounds contained in complex matrices, such as environmental samples. EM-MS expands the application and selectivity of traditional MS through the inclusion of a new dimension in the space of molecular characteristics--the electron resonance energy spectrum. However, before this tool can realize its full potential, it will be necessary to create a library of resonance energy scans from standards of the molecules for which EM-MS offers a practical means of detection. Here, an approach supplementing direct measurement with chemical inference and quantum scattering theory is presented to demonstrate the feasibility of directly calculating resonance energy spectra. This approach makes use of the symmetry of the transition-matrix element of the captured electron to discriminate between the spectra of isomers. As a way of validating this approach, the resonance values for twenty-five nitrated aromatic compounds were measured along with their relative abundance. Subsequently, the spectra for the isomers of nitrotoluene were shown to be consistent with the symmetry-based model. The initial success of this treatment suggests that it might be possible to predict negative ion resonances and thus create a library of EM-MS standards.Comment: 18 pages, 7 figure

    Genetic mapping of paternal sorting of mitochondria in cucumber

    Get PDF
    Mitochondria are organelles that have their own DNA; serve as the powerhouses of eukaryotic cells; play important roles in stress responses, programmed cell death, and ageing; and in the vast majority of eukaryotes, are maternally transmitted. Strict maternal transmission of mitochondria makes it difficult to select for better-performing mitochondria, or against deleterious mutations in the mitochondrial DNA. Cucumber is a useful plant for organellar genetics because its mitochondria are paternally transmitted and it possesses one of the largest mitochondrial genomes among all eukaryotes. Recombination among repetitive motifs in the cucumber mitochondrial DNA produces rearrangements associated with strongly mosaic (MSC) phenotypes. We previously reported nuclear control of sorting among paternally transmitted mitochondrial DNAs. The goal of this project was to map paternal sorting of mitochondria as a step towards its eventual cloning. We crossed single plants from plant introduction (PI) 401734 and Cucumis sativus var. hardwickii and produced an F2 family. A total of 425 F2 plants were genotyped for molecular markers and testcrossed as the female with MSC16. Testcross families were scored for frequencies of wild-type versus MSC progenies. Discrete segregations for percent wild-type progenies were not observed and paternal sorting of mitochondria was therefore analyzed as a quantitative trait. A major quantitative trait locus (QTL; LOD \u3e23) was mapped between two simple sequence repeats encompassing a 459-kb region on chromosome 3. Nuclear genes previously shown to affect the prevalence of mitochondrial DNAs (MSH1, OSB1, and RECA homologs) were not located near this major QTL on chromosome 3. Sequencing of this region from PI 401734, together with improved annotation of the cucumber genome, should result in the eventual cloning of paternal sorting of mitochondria and provide insights about nuclear control of organellar-DNA sorting

    Developing Controlled Conductive Boundaries for JWST Cryogenic Testing

    Get PDF
    In 2017, the James Webb Space Telescope (JWST) underwent functional testing and optical metrology verification of the combined Optical Telescope Element and Integrated Science Instrument Module (OTIS) under cryogenic vacuum conditions in Chamber A at the Johnson Space Center. Maintaining flight-like thermal boundary conditions was a critical requirement for optical testing and required unique and challenging Ground Support Equipment (GSE) design solutions. Two such GSE systems, the Integrated Science Instrument Module (ISIM) Precool Straps and the Hardpoint Struts were direct conduction interfaces to the flight hardware. Hardware safety during cooldown required detailed design of their conductivity, and thermal balance testing required "zero-Q" (0-Q) heater implementation to bring the heat flow to zero, thereby cutting off these non-flight conductive links after operating temperatures were achieved. This paper describes the design considerations and approach implemented to achieve the required flight hardware cool down and return to ambient conditions, ensure flight hardware safety, and minimize the non-flight-like heat flows to or from the observatory during cryo-stable testing
    corecore