43 research outputs found

    In vivo Imaging of Bile Accumulation and Biliary Infarction after Common Bile Duct Ligation in Rats

    Get PDF
    Obstructive cholestasis is caused by mechanical constriction or occlusion leading to reduced bile flow. Serious complications such as jaundice and even death may follow. Little is known about the initial phase of cholestasis and its consequences for the hepatic microarchitecture. This in vivo study aimed to characterize the nature and kinetics of developing obstructive cholestasis and focused on areas with biliary stasis and infarction by visualizing the autofluorescence of bile acids using intravital microscopy of the liver over a period of 30 h after bile duct ligation in rats. The innovation resided in performing fluorescence microscopy without applying fluorescent dyes. In animals subjected to obstructive cholestasis, the most significant changes observed in vivo were the concomitant appearance of (1) areas with bile accumulation increasing in size (6 h: 0.163 ± 0.043, 18 h: 0.180 ± 0.086, 30 h: 0.483 ± 0.176 mm2/field) and (2) areas with biliary infarction (6 h: 0.011 ± 0.006, 18 h: 0.010 ± 0.004, 30 h: 0.010 ± 0.050 mm2/field) as well as (3) a relation between the formation of hepatic lesions and enzyme activity in serum. The sequential in vivo analysis presented herein is a new method for the in vivo visualization of the very early changes in the hepatic parenchyma caused by obstructive cholestasis

    Bacterial migration through punctured surgical gloves under real surgical conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to confirm recent results from a previous study focussing on the development of a method to measure the bacterial translocation through puncture holes in surgical gloves under real surgical conditions.</p> <p>Methods</p> <p>An established method was applied to detect bacterial migration from the operating site through the punctured glove. Biogel™ double-gloving surgical gloves were used during visceral surgeries over a 6-month period. A modified Gaschen-bag method was used to retrieve organisms from the inner glove, and thus-obtained bacteria were compared with micro-organisms detected by an intra-operative swab.</p> <p>Results</p> <p>In 20 consecutive procedures, 194 gloves (98 outer gloves, 96 inner gloves) were examined. The rate of micro-perforations of the outer surgical glove was 10% with a median wearing time of 100 minutes (range: 20-175 minutes). Perforations occurred in 81% on the non-dominant hand, with the index finger most frequently (25%) punctured. In six cases, bacterial migration could be demonstrated microbiologically. In 5% (5/98) of outer gloves and in 1% (1/96) of the inner gloves, bacterial migration through micro-perforations was observed. For gloves with detected micro-perforations (n = 10 outer layers), the calculated migration was 50% (n = 5). The minimum wearing time was 62 minutes, with a calculated median wearing time of 71 minutes.</p> <p>Conclusions</p> <p>This study confirms previous results that bacterial migration through unnoticed micro-perforations in surgical gloves does occur under real practical surgical conditions. Undetected perforation of surgical gloves occurs frequently. Bacterial migration from the patient through micro-perforations on the hand of surgeons was confirmed, limiting the protective barrier function of gloves if worn over longer periods.</p

    Pharmacological HIF-inhibition attenuates postoperative adhesion formation

    No full text
    Abstract Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5′-Hydroxymethyl-2′-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice
    corecore