98 research outputs found

    Side-jumps in the spin-Hall effect: construction of the Boltzmann collision integral

    Get PDF
    We present a systematic derivation of the side-jump contribution to the spin-Hall current in systems without band structure spin-orbit interactions, focusing on the construction of the collision integral for the Boltzmann equation. Starting from the quantum Liouville equation for the density operator we derive an equation describing the dynamics of the density matrix in the first Born approximation and to first order in the driving electric field. Elastic scattering requires conservation of the total energy, including the spin-orbit interaction energy with the electric field: this results in a first correction to the customary collision integral found in the Born approximation. A second correction is due to the change in the carrier position during collisions. It stems from the part of the density matrix off-diagonal in wave vector. The two corrections to the collision integral add up and are responsible for the total side-jump contribution to the spin-Hall current. The spin-orbit-induced correction to the velocity operator also contains terms diagonal and off-diagonal in momentum space, which together involve the total force acting on the system. This force is explicitly shown to vanish (on the average) in the steady state: thus the total contribution to the spin-Hall current due to the additional terms in the velocity operator is zero.Comment: Added references, expanded discussion, revised introductio

    Gilbert damping and spin Coulomb drag in a magnetized electron liquid with spin-orbit interaction

    Get PDF
    We present a microscopic calculation of the Gilbert damping constant for the magnetization of a two-dimensional spin-polarized electron liquid in the presence of intrinsic spin-orbit interaction. First we show that the Gilbert constant can be expressed in terms of the auto-correlation function of the spin-orbit induced torque. Then we specialize to the case of the Rashba spin-orbit interaction and we show that the Gilbert constant in this model is related to the spin-channel conductivity. This allows us to study the Gilbert damping constant in different physical regimes, characterized by different orderings of the relevant energy scales -- spin-orbit coupling, Zeeman coupling, momentum relaxation rate, spin-momentum relaxation rate, spin precession frequency -- and to discuss its behavior in various limits. Particular attention is paid to electron-electron interaction effects,which enter the spin conductivity and hence the Gilbert damping constant via the spin Coulomb drag coefficient.Comment: 18 pages, 8 figure

    Spin-dependent thermoelectric transport in HgTe/CdTe quantum wells

    Full text link
    We analyze thermally induced spin and charge transport in HgTe/CdTe quantum wells on the basis of the numerical non-equilibrium Green's function technique in the linear response regime. In the topologically non-trivial regime, we find a clear signature of the gap of the edge states due to their finite overlap from opposite sample boundaries -- both in the charge Seebeck and spin Nernst signal. We are able to fully understand the physical origin of the thermoelectric transport signatures of edge and bulk states based on simple analytical models. Interestingly, we derive that the spin Nernst signal is related to the spin Hall conductance by a Mott-like relation which is exact to all orders in the temperature difference between the warm and the cold reservoir.Comment: 11 pages, 13 figures, submitted to PR

    Topological Excitonic Superfluids in Three Dimensions

    Full text link
    We study the equilibrium and non-equilibrium properties of topological dipolar intersurface exciton condensates within time-reversal invariant topological insulators in three spatial dimensions without a magnetic field. We elucidate that, in order to correctly identify the proper pairing symmetry within the condensate order parameter, the full three-dimensional Hamiltonian must be considered. As a corollary, we demonstrate that only particles with similar chirality play a significant role in condensate formation. Furthermore, we find that the intersurface exciton condensation is not suppressed by the interconnection of surfaces in three-dimensional topological insulators as the intersurface polarizability vanishes in the condensed phase. This eliminates the surface current flow leaving only intersurface current flow through the bulk. We conclude by illustrating how the excitonic superfluidity may be identified through an examination of the terminal currents above and below the condensate critical current.Comment: 8 pages, 6 figure

    Weak antilocalization in HgTe quantum wells and topological surface states: Massive versus massless Dirac fermions

    Full text link
    HgTe quantum wells and surfaces of three-dimensional topological insulators support Dirac fermions with a single-valley band dispersion. In the presence of disorder they experience weak antilocalization, which has been observed in recent transport experiments. In this work we conduct a comparative theoretical study of the weak antilocalization in HgTe quantum wells and topological surface states. The difference between these two single-valley systems comes from a finite band gap (effective Dirac mass) in HgTe quantum wells in contrast to gapless (massless) surface states in topological insulators. The finite effective Dirac mass implies a broken internal symmetry, leading to suppression of the weak antilocalization in HgTe quantum wells at times larger than certain t_M, inversely proportional to the Dirac mass. This corresponds to the opening of a relaxation gap 1/t_M in the Cooperon diffusion mode which we obtain from the Bethe-Salpeter equation including relevant spin degrees of freedom. We demonstrate that the relaxation gap exhibits an interesting nonmonotonic dependence on both carrier density and band gap, vanishing at a certain combination of these parameters. The weak-antilocalization conductivity reflects this nonmonotonic behavior which is unique to HgTe QWs and absent for topological surface states. On the other hand, the topological surface states exhibit specific weak-antilocalization magnetoconductivity in a parallel magnetic field due to their exponential decay in the bulk.Comment: 14 pages, 10 figures, version as publishe

    Optical properties of metallic (III,Mn)V ferromagnetic semiconductors in the infrared to visible range

    Get PDF
    We report on a study of the ac conductivity and magneto-optical properties of metallic ferromagnetic (III,Mn)V semiconductors in the infrared to visible spectrum. Our analysis is based on the successful kinetic exchange model for (III,Mn)V ferromagnetic semiconductors. We perform the calculations within the Kubo formalism and treat the disorder effects pertubatively within the Born approximation, valid for the metallic regime. We consider an eight-band Kohn-Luttinger model (six valence bands plus two conduction bands) as well as a ten-band model with additional dispersionless bands simulating phenomenologically the upper-mid-gap states induced by antisite and interstitial impurities. These models qualitatively account for optical-absorption experiments and predict new features in the mid-infrared Kerr angle and magnetic-circular-dichroism properties as a function of Mn concentration and free carrier density.Comment: 10 pages, 7 figures, some typos correcte
    • …
    corecore