29 research outputs found

    Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis

    Get PDF
    Xylose reductase (XR) is the first enzyme in d-xylose metabolism, catalyzing the reduction of d-xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)−1), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L−1 h−1 and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L−1 h−1; yield 59%)

    Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells

    Full text link

    Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase.

    No full text
    Saccharomyces cerevisiae was metabolically engineered for xylose utilization. The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae. The gene products catalyze the two initial steps in xylose utilization which S. cerevisiae lacks. In order to increase the flux through the pentose phosphate pathway, the S. cerevisiae TKL1 and TAL1 genes encoding transketolase and transaldolase were overexpressed. A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2. Overexpression of only TKL1 did not influence growth. The results indicate that the transaldolase level in S. cerevisiae is insufficient for the efficient utilization of pentose phosphate pathway metabolites. Mixtures of xylose and glucose were simultaneously consumed with the recombinant strain S104-TAL. The rate of xylose consumption was higher in the presence of glucose. Xylose was used for growth and xylitol formation, but not for ethanol production. Decreased oxygenation resulted in impaired growth and increased xylitol formation. Fermentation with strain S103-TAL, having a xylose reductase/xylitol dehydrogenase ratio of 0.5:30 compared with 4.2:5.8 for S104-TAL, did not prevent xylitol formation

    Proteomic Analysis and Discovery Using Affinity Proteomics and Mass Spectrometry*

    No full text
    Antibody-based microarrays are a rapidly evolving affinity-proteomic methodology that recently has shown great promise in clinical applications. The resolution of these proteomic analyses is, however, directly related to the number of data-points, i.e. antibodies, included on the array. Currently, this is a key bottleneck because of limited availability of numerous highly characterized antibodies. Here, we present a conceptually new method, denoted global proteome survey, opening up the possibility to probe any proteome in a species-independent manner while still using a limited set of antibodies. We use context-independent-motif-specific antibodies directed against short amino acid motifs, where each motif is present in up to a few hundred different proteins. First, the digested proteome is exposed to these antibodies, whereby motif-containing peptides are enriched, which then are detected and identified by mass spectrometry. In this study, we profiled extracts from human colon tissue, yeast cells lysate, and mouse liver tissue to demonstrate proof-of-concept
    corecore