5,719 research outputs found

    Thermodynamically Stable One-Component Metallic Quasicrystals

    Full text link
    Classical density-functional theory is employed to study finite-temperature trends in the relative stabilities of one-component quasicrystals interacting via effective metallic pair potentials derived from pseudopotential theory. Comparing the free energies of several periodic crystals and rational approximant models of quasicrystals over a range of pseudopotential parameters, thermodynamically stable quasicrystals are predicted for parameters approaching the limits of mechanical stability of the crystalline structures. The results support and significantly extend conclusions of previous ground-state lattice-sum studies.Comment: REVTeX, 13 pages + 2 figures, to appear, Europhys. Let

    New results for the degree/diameter problem

    Full text link
    The results of computer searches for large graphs with given (small) degree and diameter are presented. The new graphs are Cayley graphs of semidirect products of cyclic groups and related groups. One fundamental use of our ``dense graphs'' is in the design of efficient communication network topologies.Comment: 15 page

    Exploring the role of messenger effects and feedback frames in promoting uptake of energy-efficient technologies

    Get PDF
    The persuasive potential for varying messenger types and feedback frames to increase pro-environmental choice was explored in a 2 (feedback frame: financial vs. environmental) × 5 (messenger type: neighbour, government, industry, utilities vs. control) factorial design experiment. Using the context of home heating choice, 493 non-student participants were given information on either the financial or environmental benefits of selecting an energy-efficient heat pump versus a standard boiler, as described by one of four messenger types (versus a no-messenger control). Likelihood of selecting the ‘green’ technology was assessed, as well as any carry-over effects on real-life behavioural intentions. Additionally, we assessed the messenger attributes that appeared to be most important in this context, in terms of whether sources that were perceived to be trustworthy, knowledgeable, or a combination of both dimensions, would hold greater sway over preference formation. Overall, no evidence was found for any impact of messenger type on either preference formation or behavioural intentions. However, message content (i.e. how information on the benefits of pro-environmental choice was framed), was found to have substantial impact on behaviour; with the financial versus environmental decision frame being significantly more likely to encourage uptake of the energy-efficient versus standard technology. We suggest that the level of processing required for the kinds of large-scale purchase decisions we consider here may explain the lack of any messenger effect on choice behaviour. Implications for the development of behaviour change interventions designed to promote consideration of energy-efficient technologies in this context are discussed

    CO adsorption on metal surfaces: a hybrid functional study with plane wave basis set

    Full text link
    We present a detailed study of the adsorption of CO on Cu, Rh, and Pt (111) surfaces in top and hollow sites. The study has been performed using the local density approximation, the gradient corrected functional PBE, and the hybrid Hartree-Fock density functionals PBE0 and HSE03 within the framework of generalized Kohn-Sham density functional theory using a plane-wave basis set. As expected, the LDA and GGA functionals show a tendency to favor the hollow sites, at variance with experimental findings that give the top site as the most stable adsorption site. The PBE0 and HSE03 functionals reduce this tendency. In fact, they predict the correct adsorption site for Cu and Rh but fail for Pt. But even in this case, the hybrid functional destabilizes the hollow site by 50 meV compared to the PBE functional. The results of the total energy calculations are presented along with an analysis of the projected density of states.Comment: 32 pages, 6 tables, 3 figures. (Re)Submitted to Phys. Rev. B; LDA results added in the tables; minor changes in the tex

    Ecksteine in der modernen Versorgung von Unterschenkelulzera

    Full text link

    Freezing of Simple Liquid Metals

    Full text link
    Freezing of simple liquid metals and the relative stabilities of competing crystalline solids are investigated using thermodynamic perturbation theory, the interactions between ions being modeled by effective pair potentials derived from pseudopotential theory. The ionic free energy of the solid phase is calculated, to first order in the perturbation potential, using classical density-functional theory and an accurate approximation to the hard-sphere radial distribution function. Free energy calculations for Na, Mg, and Al yield well-defined freezing transitions and structural free energy differences for bcc, fcc, and hcp crystals in qualitative agreement with experiment.Comment: 8 pages, 4 figures, LaTeX with elsart.st

    Self-Assembly of Monatomic Complex Crystals and Quasicrystals with a Double-Well Interaction Potential

    Full text link
    For the study of crystal formation and dynamics we introduce a simple two-dimensional monatomic model system with a parametrized interaction potential. We find in molecular dynamics simulations that a surprising variety of crystals, a decagonal and a dodecagonal quasicrystal are self-assembled. In the case of the quasicrystals the particles reorder by phason flips at elevated temperatures. During annealing the entropically stabilized decagonal quasicrystal undergoes a reversible phase transition at 65% of the melting temperature into an approximant, which is monitored by the rotation of the de Bruijn surface in hyperspace.Comment: 4 pages, 6 figures. Physical Review Letters, in Press (April 2007

    The Structure of Barium in the hcp Phase Under High Pressure

    Full text link
    Recent experimental results on two hcp phases of barium under high pressure show interesting variation of the lattice parameters. They are here interpreted in terms of electronic structure calculation by using the LMTO method and generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II the dramatic drop in c/a is an instability analogous to that in the group II metals but with the transfer of s to d electrons playing a crucial role in Ba. Meanwhile in phase V, the instability decrease a lot due to the core repulsion at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx, 71.15LaComment: 29 pages, 8 figure

    Structural behavior of uranium dioxide under pressure by LSDA+U calculations

    Full text link
    The structural behavior of UO2 under high pressure up to 300GPa has been studied by first-principles calculations with LSDA+U approximation. The results show that a pressure-induced structural transition to the cotunnite-type (orthorhombic Pnma) phase occurs at 38GPa. It agrees well with the experimentally observed ~42 GPa. An isostructural transition following that is also predicted to take place from 80 to 130GPa, which has not yet been observed in experiments. Further high compression beyond 226GPa will result in a metallic and paramagnetic transition. It corresponds to a volume of 90A^3 per cell, in good agreement with a previous theoretical analysis in the reduction of volume required to delocalize 5f states.Comment: 10 pages, 8 figure
    • …
    corecore