Classical density-functional theory is employed to study finite-temperature
trends in the relative stabilities of one-component quasicrystals interacting
via effective metallic pair potentials derived from pseudopotential theory.
Comparing the free energies of several periodic crystals and rational
approximant models of quasicrystals over a range of pseudopotential parameters,
thermodynamically stable quasicrystals are predicted for parameters approaching
the limits of mechanical stability of the crystalline structures. The results
support and significantly extend conclusions of previous ground-state
lattice-sum studies.Comment: REVTeX, 13 pages + 2 figures, to appear, Europhys. Let