320 research outputs found

    How to detect weak emergent broken-symmetries of the Kagome antiferromagnet from Raman spectroscopy

    Full text link
    We show that the magnetic Raman response of a spin-liquid is independent of the polarizations of the light for triangular symmetries. In contrast, a ground-state that has a broken symmetry shows characteristic oscillations when the polarizations are rotated. This would allow to detect weak broken symmetries and emergent order-parameters. We focus on the Kagome antiferromagnet where no conventional long-range order has been found so far, and present the Raman cross-section of a spin-liquid and a valence bond crystal (VBC) using a random phase approximation.Comment: 4 pages, 2 figures, v2. intro partially rewritte

    Statistical bias correction for daily precipitation in regional climate models over Europe

    Get PDF
    We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections

    Parametric uncertainty effects on aerosol radiative forcing

    Get PDF
    Among the known radiative forcings, the fourth IPCC assessment report estimates the aerosol radiative forcing to harbor the widest range of uncertainty extending from -1.8 to -0.3 W/m(2). The IPCC estimates focus mainly on structural uncertainties, including uncertainties in aerosol sources. Here, we study the uncertainty of the sulfate aerosol radiative forcing due to parametric uncertainty in a state-of-the-art general circulation model (GCM). Numerical experiments were carried out by perturbing seven cloud parameters in the model. We find that the uncertainty due to a single one of these parameters can be as large as 0.5 W/m(2), and the uncertainty due to combinations of these parameters can reach more than 1 W/m(2). These numbers should be compared with the sulfate aerosol forcing of -1.9 W/m(2) for the year 2000, obtained using the default values of the parameters. The uncertainty results from a high sensitivity of cloud optical properties to aerosol concentrations, which can be amplified by changing cloud parameter setting

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    Superação da insuficiência de frio hibernal em ameixeiras (prunus domestica L.) cv D'agen.

    Get PDF
    bitstream/item/31592/1/comunicado79.pd

    Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature

    Get PDF
    Past studies have argued that the intensity of extreme precipitation events should increase exponentially with temperature. This argument is based on the principle that the atmospheric moisture holding capacity increases according to the Clausius-Clapeyron equation and on the expectation that precipitation formation should follow accordingly. We test the latter assumption by investigating to what extent a relation with temperature can be observed intraseasonally in present-day climate. For this purpose, we use observed and simulated daily surface temperature and precipitation over Europe. In winter a general increase in precipitation intensity is indeed observed, while in summer we find a decrease in precipitation intensity with increasing temperature. We interpret these findings by making use of model results where we can distinguish separate precipitation types and investigate the moisture content in the atmosphere. In winter, the Clausius-Clapeyron relationship sets a limit to the increase in the large-scale precipitation with increasing temperature. Conversely, in summer the availability of moisture, and not the atmosphere's capacity to hold this moisture, is the dominant factor at the daily timescale. For convective precipitation, we find a peak like structure which is similar for all subregions, independent of the mean temperature, contrary to large-scale precipitation which has a more monotonic dependence on temperature

    Thermoelectric effects in a strongly correlated model for Nax_xCoO2_2

    Get PDF
    Thermal response functions of strongly correlated electron systems are of appreciable interest to the larger scientific community both theoretically and technologically. Here we focus on the infinitely correlated t-J model on a geometrically frustrated two-dimensional triangular lattice. Using exact diagonalization on a finite sized system we calculate the dynamical thermal response functions in order to determine the thermopower, Lorenz number, and dimensionless figure of merit. The dynamical thermal response functions is compared to the infinite frequency limit and shown to be very weak functions of frequency, hence, establishing the validity of the high frequency formalism recently proposed by Shastry for the thermopower, Lorenz number, and the dimensionless figure of merit. Further, the thermopower is demonstrated to have a low to mid temperature enhancement when the sign of the hopping parameter tt is switched from positive to negative for the geometrically frustrated lattice considered.Comment: 16 pages, 10 figures, color version available at http://physics.ucsc.edu/~peterson/mrpeterson-condmat-NCO.pdf. V.2 has fixed minor typos in Eq. 11, 19, 25, and 26. V.3 is a color versio

    Circling in on convective organization

    Get PDF
    Cold pools (CPs) contribute to convective organization. However, it is unclear by which mechanisms organization occurs. By using a particle method to track CP gust fronts in large eddy simulations, we characterize the basic collision modes between CPs. Our results show that CP interactions, where three expanding gust fronts force an updraft, are key at triggering new convection. Using this, we conceptualize CP dynamics into a parameter‐free mathematical model: circles expand from initially random points in space. Where two expanding circles collide, a stationary front is formed. However, where three expanding circles enclose a single point, a new expanding circle is seeded. This simple model supports three fundamental features of CP dynamics: precipitation cells constitute a spatially interacting system; CPs come in generations; and scales steadily increase throughout the diurnal cycle. Finally, this model provides a framework for how CPs act to cause convective self‐organization, clustering, and extremes

    DNA methylation in human epigenomes depends on local topology of CpG sites

    Get PDF
    In vertebrates, methylation of cytosine at CpG sequences is implicated in stable and heritable patterns of gene expression. The classical model for inheritance, in which individual CpG sites are independent, provides no explanation for the observed non-random patterns of methylation. We first investigate the exact topology of CpG clustering in the human genome associated to CpG islands. Then, by pooling genomic CpG clusters on the basis of short distances between CpGs within and long distances outside clusters, we show a strong dependence of methylation on the number and density of CpG organization. CpG clusters with fewer, or less densely spaced, CpGs are predominantly hyper-methylated, while larger clusters are predominantly hypo-methylated. Intermediate clusters, however, are either hyper- or hypo-methylated but are rarely found in intermediate methylation states. We develop a model for spatially-dependent collaboration between CpGs, where methylated CpGs recruit methylation enzymes that can act on CpGs over an extended local region, while unmethylated CpGs recruit demethylation enzymes that act more strongly on nearby CpGs. This model can reproduce the effects of CpG clustering on methylation and produces stable and heritable alternative methylation states of CpG clusters, thus providing a coherent model for methylation inheritance and methylation patterning.Cecilia Lövkvist, Ian B. Dodd, Kim Sneppen and Jan O. Haerte
    corecore