345 research outputs found

    Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions

    Get PDF
    In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2−/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.

    Predicting Pancreas Cell Fate Decisions and Reprogramming with a Hierarchical Multi-Attractor Model

    Get PDF
    Cell fate reprogramming, such as the generation of insulin-producing β cells from other pancreas cells, can be achieved by external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a coarse-grained dynamical ODE (ordinary differential equation) based model, it is possible to recapitulate the observed attractors of the exocrine and β, δ, α endocrine cells and to predict which gene perturbation can result in desired lineage reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors that need to be modulated for fate reprogramming

    A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data

    Get PDF
    Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed genes have been accomplished using various versions of clustering approaches that often result in a number of false positives. Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic we term ‘progressive construction of contigs ’ that constructs local chains of related elements by sequentially rearranging margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data. Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a usefu

    Pdx1 and Ngn3 Overexpression Enhances Pancreatic Differentiation of Mouse ES Cell-Derived Endoderm Population

    Get PDF
    In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit+ endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells

    Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

    Get PDF
    During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain

    Gene Expression Profiles of Beta-Cell Enriched Tissue Obtained by Laser Capture Microdissection from Subjects with Type 2 Diabetes

    Get PDF
    Background: Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D) should provide insights into their abnormal insulin secretion and turnover. Methodology/Principal Findings: Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM). RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip) and Gene Set Enrichment Analysis (GSEA) software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG) family and metalloproteinase 7 (MMP7). Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2) were upregulated while JAZF1 and SLC30A8 were downregulated. Conclusions/Significance: This study made possible by LCM has identified many novel changes in gene expression tha

    Role of Endoplasmic Reticulum Stress in α-TEA Mediated TRAIL/DR5 Death Receptor Dependent Apoptosis

    Get PDF
    Background -- α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells. Methodology/Principal Findings -- α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP's inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling. Conclusion -- Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.The Clayton Foundation for Research, the National Institute of Environmental Health Sciences Center Grant ES007784, the Center for Molecular and Cellular Toxicology at the University of Texas at Austin and a NIEHS/NIH Toxicology Training Grant T32 ES07247. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    Get PDF
    Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas
    corecore