170 research outputs found

    Bulk water distribution power supply failures

    Get PDF
    This paper considers the probability of power supply failures at bulk water distribution pump stations. Electrical power supply is important within the bulk water distribution environment, particularly when pumping is required. Reliability of power supply is commonly expressed by means of indices, such as amongst others, the SAIDI and SAIFI indices as defined by the Institute of Electrical and Electronics Engineering (IEEE). These indices are used to calculate the probability of failure associated with power supply. Data was obtained from a number of sources and used to benchmark the reliability of South African power supply against that of other countries. The reliability of power supply from seven South African Water Board (Rand Water) pump stations is also analysed. Limited data seems to be available that allows one to quantify the reliability of pump systems, taking into account the reliability of the various system components

    The failure probability of welded steel pipelines in dolomitic areas

    Get PDF
    This paper considers aspects related to the nature of dolomite, sinkholes, the risk classification of dolomite land, as well as factors affecting the failure of pipelines in dolomitic areas. The information and data presented are used to derive equations that may be used to predict the probability of failure of steel pipelines in dolomitic areas subject to sinkhole formation. Consideration is also given to other factors that may influence the failure of pipeline in dolomitic areas

    Filter media expansion during backwash: The effect of biological activity

    Get PDF
    Close observation at a number of South African water treatment plants has shown that media losses during backwashing are excessive – much higher than anticipated. The only likely reasons for this phenomenon are either that insufficient freeboard was provided by the designer or that the mechanical behaviour of the media gradually changes after being placed in the filters. A number of media tests confirmed that the biological fraction of the specific deposit on the filter media (after backwashing) is relatively high – about 50% of the total specific deposit. This led to the hypothesis that the combination of high nutrient concentrations in surface waters, coupled with elevated water temperatures, stimulate biofilm formation on the media grains. These films, in turn, somehowaffect the mechanical behaviour of the media bed expansion and backwash. This paper reviews the Dharmarajah bed expansion model (as the most advanced model for media expansion to date) and presents evidence that it predicts the expansion of clean, ovendried media reasonably well. It further shows that media from filters which have been in operation for a while, expand significantly more than predicted by the Dharmarajah model. This finding has major implications for filter design, and suggestions are made on how to adapt design procedures for what is now believed to be the formation of biofilm on media grains. Water SA Vol. 30 (5) 2005: pp.51-5

    A practical course on filter assessment for water treatment plant operators

    Get PDF
    Please refer to full text to view abstract Please refer to full text to view abstrac

    How can filter cleanliness be determined?

    Get PDF
    It is general believed that a sand filter starts its life with new, perfectly clean media, which becomes gradually clogged with each filtration cycle, eventually getting to a point where either head loss or filtrate quality starts to deteriorate. At this point the backwash cycle is initiated and, through the combined action of air and water, returns the media to its original perfectly clean state. Reality, however, dictates otherwise. Many treatment plants visited a decade or more after commissioning are found to have unacceptably dirty filter sand and backwash systems incapable of returning the filter media to a desired state of cleanliness. In some cases, these problems are common ones encountered in filtration plants but many reasons for media deterioration remain elusive, falling outside of these common problems.The South African conditions of highly eutrophic surface waters at high temperatures, however, exacerbate the problems with dirty filter media. Such conditions often lead to the formation of biofilm in the filter media, which is shown to inhibit the effective backwashing of sand and carbon filters. A systematic investigation into filter media cleanliness was therefore started in 2002, ending in 2005, at the University of Johannesburg (the then Rand Afrikaans University). This involved media from eight South African Water Treatment Plants, varying between sand and sand-anthracite combinations and raw water types from eutrophic through turbid to low-turbidity waters.Five states of cleanliness and four fractions of specific deposit were identified relating to in situ washing, column washing, cylinder inversion and acid-immersion techniques. These were measured and the results compared to acceptable limits for specific deposit, as determined in previous studies, though expressed in kg/m3. These values were used to determine the state of the filters. In order to gain greater insight into the composition of the specific deposits stripped from the media, a four-point characterisation step was introduced for the resultant suspensions based on acid-solubility and volatility.Results showed that a reasonably effective backwash removed a median specific deposit of 0.89 kg/m3. Further washing in a laboratory column removed a median specific deposit of 1.34 kg/m3. Media subjected to a standardised cylinder inversion procedure removed a median specific deposit of 2.41 kg/m3. Immersion in a strong acid removed a median specific deposit of 35.2 kg/m3.The four-point characterisation step showed that the soluble-volatile fraction was consistently small in relation to the other fractions. The organic fraction was quite high at the RG treatment plant and the soluble-non-volatile fraction was particularly high at the BK treatment plant

    Technical note: Measurement and expression of granular filter cleanliness

    Get PDF
    The problem of dirty filter media at water treatment plants, despite having good backwash systems, is a serious challenge that requires constant monitoring and maintenance. To aid the systematic analysis of filter media and the troubleshooting of problem filters, this paper firstly proposes a standard procedure for quantification of the specific deposit on filter media, including tentative guidelines for the interpretation of the results. Secondly, a standard procedure is proposed for the characterisation of the specific deposit, based on its volatility and its acid solubility. These fractions are helpful to trace the origin of excessively dirty filter media. Thirdly, the utility of the proposed procedures is demonstrated by the results of a South African treatment plant survey. This confirms some earlier observations that there often is a real problem with recalcitrant specific deposits that cannot be readily removed by backwashing, a fraction that correlates with the organic fraction in the specific deposit.Keywords: backwashing, specific deposit, filter media, filter cleanlines

    A standard test for filter media cleanliness

    Get PDF
    Abstract: Rapid sand filters are expected to produce clean, safe water, without interruption, for many years. Unfortunately, filters very often develop some problems during this time, most of which only become apparent when the damage is already done. Routine measurement of filter media cleanliness could provide the necessary early warning, which is the reason why the American Water Works Association (AWWA) suggested a media cleanliness test for inclusion in a structured filter assessment programme at drinking water treatment plants. After performing such assessments at 3 South African water treatment plants, the authors found that the results were not consistent, the turbidity could not be measured easily and the guideline values seemed to be excessively conservative. This led to an investigation to find a method for stripping the filter deposits from the media grains with an easy, reproducible method, and for characterising the stripped deposits. After a series of tests on various filter media, using 6 stripping methods, 2 methods were identified that met the criteria in the first objective. The first, a magnetic stirrer method is a mechanical agitation method and the second, referred to as the cylinder inversion method, is a manual agitation method. Each of these methods was chosen on the basis of their operator and speed-ofagitation independence. The criteria in the second objective were met by an in-depth suspended solids (SS) analysis performed on the filter media residue, with the total mass of solids removed from the media quantitatively separated on the grounds of acid solubility and volatility at 550°C. Standard Methods (1985) 209C and 209D were applied to the sample, with and without acid addition, in order to characterise the total filter media residue using 4 groupings: Soluble, non-volatile; soluble, volatile; non-soluble, non-volatile; and non-soluble, volatile. By meeting the criteria of these 2 objectives, the previous non-specific suggestions in the literature have been improved to suggest the performing of tests in a well-specified, uniform way, the results of which can be internally compared

    How to measure specific deposit washout and backwash efficiency of granular filters

    Get PDF
    Abstract Practical experience shows that water treatment filters develop problems over time due to the routine running of the filter, including backwashing. There are difficulties in maintaining filters in good condition, given the eutrophic state of many South African raw waters, high water temperatures and the development of difficult-to-remove biofilm as a result. Such difficulties are often related to deposits accumulated on the filter media and it is, therefore, expected that the backwash system should be good enough to ensure that the filter is kept clean in the long run. This paper deals with a fairly simple operational option to significantly improve backwash efficiency at treatment plants where air and water are used consecutively. The paper describes methods used and typical results obtained in the testing of the quantitative benefits of multiple wash cycles. Multiple washing shows great promise for improving backwash efficiency, with an average of an additional 40% to 50% of the solids that would have been washed out with a single wash, removed by a second wash. Furthermore, third and even fourth washes continue to remove additional dirt from the filter. Multiple washing, therefore, may be a useful tool for the effective rehabilitation of a filter, as well as for routine operation procedures

    The use of filter media to determine filter cleanliness

    Get PDF
    Abstract It is general believed that a sand filter starts its life with new, perfectly clean media, which becomes gradually clogged with each filtration cycle, eventually getting to a point where either head loss or filtrate quality starts to deteriorate. At this point the backwash cycle is initiated and, through the combined action of air and water, returns the media to its original perfectly clean state. Reality, however, dictates otherwise. Many treatment plants visited a decade or more after commissioning are found to have unacceptably dirty filter sand and backwash systems incapable of returning the filter media to a desired state of cleanliness. In some cases, these problems are common ones encountered in filtration plants but many reasons for media deterioration remain elusive, falling outside of these common problems. The South African conditions of highly eutrophic surface waters at high temperatures, however, exacerbate the problems with dirty filter media. Such conditions often lead to the formation of biofilm in the filter media, which is shown to inhibit the effective backwashing of sand and carbon filters. A systematic investigation into filter media cleanliness was therefore started in 2002, ending in 2005, at the University of Johannesburg (the then Rand Afrikaans University). This involved media from eight South African Water Treatment Plants, varying between sand and sand-anthracite combinations and raw water types from eutrophic through turbid to low-turbidity waters. Five states of cleanliness and four fractions of specific deposit were identified relating to in situ washing, column washing, cylinder inversion and acid-immersion techniques. These were measured and the results compared to acceptable limits for specific deposit, as determined in previous studies, though expressed in kg/m3. These values were used to determine the state of the filters. In order to gain greater insight into the composition of the specific deposits stripped from the media, a four-point characterisation step was introduced for the resultant suspensions based on acid-solubility and volatility. Results showed that a reasonably effective backwash removed a median specific deposit of 0.89 kg/m3. Further washing in a laboratory column removed a median specific deposit of 1.34 kg/m3. Media subjected to a standardised cylinder inversion procedure removed a median specific deposit of 2.41 kg/m3. Immersion in a strong acid removed a median specific deposit of 35.2 kg/m3. The four-point characterisation step showed that the soluble-volatile fraction was consistently small in relation to the other fractions. The organic fraction was quite high at the RG treatment plant and the soluble- non-volatile fraction was particularly high at the BK treatment plan

    A new model for the simplification of particle counting data

    Get PDF
    This paper proposes a three-parameter mathematical model to describe the particle size distribution in a water sample. The proposed model offers some conceptual advantages over two other models reported on previously, and also provides a better fit to the particle counting data obtained from 321 water samples taken over three years at a large South African drinking water supplier. Using the data from raw water samples taken from a moderately turbid, large surface impoundment, as well as samples from the same water after treatment, typical ranges of the model parameters are presented for both raw and treated water. Once calibrated, the model allows the calculation and comparison of total particle number and volumes over any randomly selected size interval of interest
    • …
    corecore