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Abstract 
 
It is general believed that a sand filter starts its life with new, perfectly clean media, which becomes 
gradually clogged with each filtration cycle, eventually getting to a point where either head loss or filtrate 
quality starts to deteriorate.  At this point the backwash cycle is initiated and, through the combined 
action of air and water, returns the media to its original perfectly clean state.   Reality, however, dictates 
otherwise.  Many treatment plants visited a decade or more after commissioning are found to have 
unacceptably dirty filter sand and backwash systems incapable of returning the filter media to a desired 
state of cleanliness.  In some cases, these problems are common ones encountered in filtration plants but 
many reasons for media deterioration remain elusive, falling outside of these common problems. The 
South African conditions of highly eutrophic surface waters at high temperatures exacerbate the problems 
with dirty filter media as such conditions lead to the formation of biofilm in the filter media, shown to 
inhibit the effective backwashing of sand and carbon filters A systematic investigation into filter media 
cleanliness was therefore started in 2002 at the University of Johannesburg (the then  Rand Afrikaans 
University), involving media from eight South African Water Treatment Plants, varying between sand 
and sand-anthracite combinations and raw water types from eutrophic through turbid to low-turbidity 
waters. Five states of cleanliness and four fractions of specific deposit were identified relating to in-situ 
washing, column washing, cylinder inversion and acid-immersion techniques.  These were measured and 
the results compared to acceptable limits for specific deposit, as determined in previous studies, though 
expressed in kg/m3.  These values were used to determine the state of the filters.  In order to gain greater 
insight into the composition of the specific deposits stripped from the media, a four-point characterisation 
step was introduced for the resultant suspensions based on acid-solubility and volatility. Results showed 
that a reasonably effective backwash removed a median specific deposit of 0.89 kg/m3.  Further washing 
in a laboratory column removed a median specific deposit of 1.34 kg/m3.  Media subjected to a 
standardised cylinder inversion procedure removed a median specific deposit of 2.41 kg/m3.  Immersion 
in a strong acid removed a median specific deposit of 35.2 kg/m3. The four-point characterization step 
showed that the soluble-volatile fraction was consistently small in relation to the other fractions.  The 
organic fraction was quite high at the RG treatment plant and the soluble-non-volatile fraction was 
particularly high at the BK treatment plant. 
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Introduction 

 

It is general believed that a sand filter starts its life with new, perfectly clean media, which 

becomes gradually clogged with each filtration cycle, eventually getting to a point where either 

head loss or filtrate quality starts to deteriorate.  At this point the backwash cycle is initiated and, 
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through the combined action of air and water, returns the media to its original perfectly clean 

state.   Reality, however, dictates otherwise.  Many treatment plants visited a decade or more 

after commissioning are found to have unacceptably dirty filter sand and backwash systems 

incapable of returning the filter media to a desired state of cleanliness.  In some cases, these 

problems are common ones encountered in filtration plants (Lombard and Haarhoff, 1995), but 

many reasons for media deterioration remain elusive, falling outside of these common problems. 

 

As a result, a standard “floc retention test” was made available by the American Water Works 

Association based on the Kawamura method (Kawamura, 2000; Logsdon et al., 2002) to provide 

a routine snapshot measure of filter media cleanliness.  This would, in theory, allow early 

detection of the potential for serious problems. This method was performed by five cycles of 

vigorously shaking 50g of media with 100ml water for 30 seconds, decanting the resultant 

suspension after every cycle until 500ml of dirty water is collected.  The turbidity of the 

suspension was measured, doubled and reported as NTU (nephelometric turbidity units)/100g of 

sand.  The results could then be compared to a four-point scale provided for assessing filter 

cleanliness – clean, slightly dirty, dirty with need for closer evaluation, and problems with 

mudballs, ranging from < 60 (clean filters) to 300 NTU/100g or more (filters with a possible 

mudball problem). 

 

The South African conditions of highly eutrophic surface waters at high temperatures, however, 

exacerbate the problems with dirty filter media as such conditions lead to the formation of 

biofilm in the filter media, shown to inhibit the effective backwashing of sand and carbon filters 

(Clements, 2002).  A systematic investigation into filter media cleanliness was therefore started 

around 2002 at the University of Johannesburg (up to 2004, the Rand Afrikaans University), 

involving media from eight South African Water Treatment Plants, varying between sand and 

sand-anthracite combinations and raw water types from eutrophic through turbid to low-turbidity 

waters. 
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How does one measure the cleanliness of a filter from its media? 

 

In order to better interpret media cleanliness and the efficacy of the backwashing procedure, it 

was necessary for the authors to obtain media samples at various stages of cleanliness.  As a 

result, five states of cleanliness and four fractions of specific deposit were identified and the 

means of determining their cleanliness outlined below (after Haarhoff et al., 2008). 

 

Five states of cleanliness 

• BBW (Before Backwash).  The media cleanliness after a typical filter run at the treatment 

plant, before the media is cleaned by the treatment plant backwash system. 

• ABW (After Backwash).  The media cleanliness after the media had been backwashed by the 

backwash system at the treatment plant.  Where a single filter bed had been subjected to 

more than one consecutive wash, the state of cleanliness is designated by ABW[1] after the 

first wash, ABW[2] after the second wash, and et cetera. 

• ACW (After Column Wash).  The media cleanliness after the media had been washed under 

optimal, standardised conditions in a laboratory column.  This backwash rate is selected to 

attain about 50% bed expansion and the wash is continued for five minutes (AWWA, 1990). 

• APS (After Physical Stripping).  The media cleanliness after it had been subjected to 

standardised agitation and rinsing in the laboratory.  Much time was spent on the 

standardised agitation procedure during these investigations. 

• ACS (After Chemical Stripping).  The media cleanliness after it had been immersed in a 

strong acid.  After ACS, the media should be returned to practically its ‘new’ state. 

 

Four fractions of specific deposit 

• The specific deposit removed by the treatment plant backwash system: Typically [BBW – 

ABW].  However, in the case of multiple consecutive wash cycles being conducted, the 

amount of specific deposit washed out during consecutive washes is given by [BBW – 

ABW(1)], [ABW(1) – ABW(2)] and et cetera. 

• The specific deposit washed out under laboratory column conditions: [ABW – ACW].  This 

fraction measures the specific deposit which cannot be washed out at the treatment plant.  If 
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found to be small, an efficient treatment plant backwash system is indicated.   If large, a 

deficient plant backwash system is indicated. 

• The specific deposit removed by physical stripping in the laboratory, which cannot be 

washed out in the laboratory under optimal conditions: [ACW – APS].  This fraction 

represents a recalcitrant, sticky part of the specific deposit which is not removed regardless 

of how well the plant backwash system works.  If found to be large, a problem with the raw 

water and/or dosing strategy is indicated and, thus, more attentive monitoring and filter bed 

maintenance is required. 

• The specific deposit which can only be removed by chemical stripping: [APS – ACS].  This 

fraction measures the specific deposit that cannot be readily removed from the media by 

physical means and makes up the ‘hard’ deposits.   If found to be large, this fraction indicates 

an incorrect dosing strategy, encouraging chemical precipitation onto the filter media. 

 

There exist two ways of determining the first two fractions of specific deposit identified above: 

 

• Specific deposit removed can be determined by the washout method, i.e. it is measured from 

the backwash water that is carried away, using backwash rate, total mass of solids in the 

backwash water, and total media bed volume. 

• Specific deposit removed can be determined by the media method, i.e. it is measured directly 

from the media by subtracting the specific deposit of one sample from the specific deposit of 

another sample, e.g. (BBW – ABW). 

 

These two methods should yield the same results, in theory.  However, practical obstacles to both 

exist, i.e. the washout method is challenged by time lags before sampling and difficulties in 

obtaining representative samples from a large flow of water, which may not necessarily be 

homogenous in solids concentration, and the media method faces imprecision when determining 

a small difference between two large numbers.  Investigations comparing measurements on 

many occasions led the authors to suggest the following measurements be done for each method: 

 

• [BBW – ABW] and [ABW – ACW]: Measure using the washout method. 
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• Measure the specific deposit of the ABW and APS samples and [APS – ACS]: Measure 

using the media method  

 

Determination of washable specific deposit from backwash water 

Samples of dirty backwash water are taken at least every 30 seconds for the duration of the 

backwash and are evenly spaced in time.  Wherever possible, samples are taken from a collection 

channel rather than at the first overflow weir to prevent “streakiness” due to uneven cleaning of 

adjacent media patches.  Samples of 200ml are transferred to bottles and their TSS determined in 

the laboratory. (Standard Method 209C, AWWA, 1992) 

 

The backwash rate (BR) is measured in situ by closing the backwash discharge valve while the 

backwash pumps are running and noting the time taken for the water to rise at least 500mm 

within the filter box, and calculated directly (correcting for areas occupied by backwash troughs 

or other filter box intrusions).  Bed depth (BD) is measured by probing with a thin rod at a few 

positions.  Finally, specific deposit is calculated as: 

 

[ ] [ ] [ ]( )
[ ]

3 / . / .
/

1000 .specific deposit

BR mm s TSS mg l t s
TSS kg m

BD mm
⎡ ⎤ =⎣ ⎦

∑  

with t the backwash time represented by each sample. 

 

Physical stripping of the media 

The authors started by measuring cleanliness directly from the media.  However, the method 

suggested by Kawamura proved challenging and, after extensive testing of various ways in 

which this method might be enhanced (Van Staden and Haarhoff, 2004), the following test 

method was finalised and used to measure cleanliness. 

 

A full-scale filter is cored with a 35mm diameter thin-walled tube throughout the bed depth in at 

least three locations, after scraping off the top 10mm of the media to prevent inclusion of surface 

debris.  The media obtained is gently homogenised with a riffle splitter and about 250ml of it is 

sealed in a plastic bag and refrigerated for analysis soon thereafter in the laboratory. 
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Approximately 40 to 60ml of media is weighed, dried at 105°C and reweighed to determine the 

moisture content (MC) of the media through mass difference. A further three samples of 

approximately 60ml each are measured out and weighed.  Using MC, the dry media mass 

(DMM) of each sample is determined.  Each sample is then treated as follows: 

 

The sample is placed in a 250ml measuring cylinder, with 100ml tap water, sealed and inverted 

20 times, with short pauses between inversions to allow the media to settle at the bottom.  The 

resultant suspension is drained into a 500ml Erlenmeyer flask.  Five cycles of this water addition, 

inversion and draining procedure is performed, adding the suspension to the same flask.  Once 

the 500ml of dirty suspension had been collected, its total suspended solids  (TSS) is measured 

according to Standard Method 209C (AWWA, 1992). 

 

In previous publications, the authors found that specific deposit could be conveniently expressed 

as the mass/mass ratio of mg/g (Van Staden & Haarhoff, 2004a, 2004c).  However, due to the 

differing densities of silica, anthracite and activated carbon it was decided to express specific 

deposit more universally as mass of solids per bulk volume of media, with the units in kg/m³, 

which is independent of media grain density and requires only the media grain density and bed 

porosity for conversion.  Thus, specific deposit is calculated as: 

 

[ ] ( )
[ ]

3

3
/ . / . 1

/
2000 .specific deposit

TSS mg l kg m
TSS kg m

DMM g

ρ ε⎡ ⎤ −⎣ ⎦⎡ ⎤ =⎣ ⎦  

with ρ the media grain density and ε the filter bed porosity. 

 

The median value of these triplicate results is suggested as a fair representation of the specific 

deposit on the filter media. 

 

Acceptable limits for specific deposit were determined by the authors previously (Haarhoff and 

van Staden, 2006), based on the same categories used by Kawamura, though adjusted upwards 

based on the results obtained by a South African survey and expressed in kg/m3 (see Table 1 

below) and these values were used to determine the state of the filters. 
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Table 1: Suggested classification limits and visual classification of filter beds for average (ABW 

– APS). 

 

Limit Classification (ABW – APS) (kg/m3) 

1 Media appeared clean 0.0 – 4.0 

2 Media somewhat dirty, no mudballs 4.0 – 7.0 

3 Small mudballs 7.0 – 15.0 

4 Definite mudball formation 15.0 –  

 

 

Chemical stripping of the media 

In addition to physically stripping the media, it was decided to strip the media down to it’s virgin 

state, using the acid solubility procedure from AWWA B100-89 (1989) (performed in triplicate). 

 

A glass beaker is weighed and its mass recorded.  A minimum of 350 g of the wet column 

washed media is placed in the beaker and weighed.  The sample is dried in an oven at 110˚C ± 

5˚C.  The media is allowed to cool and it’s mass determined as the mass before stripping (MBS).  

20% HCl solution is added slowly to the media (enough to immerse the sample completely) and 

the volume of acid solution added is recorded. 

 

The mixture is stirred occasionally and allowed to stand until effervescence ceases.  The “dirty” 

acid suspension is drawn off for further analyses and the media sample washed several times in 

tap water and dried at 110˚C ± 5˚C.  Once dry, the sample is allowed to cool and it’s mass 

determined as the mass after stripping (MAS). 

 

Using the media grain density (in kg/m3) as before, the contribution of chemically stripped 

deposits could be determined as follows: 

 

[ ] [ ]( )
[ ]

3  /
MBS g MAS g

APS ACS kg m
MBS g

ρ −
⎡ ⎤− =⎣ ⎦  
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[ ]
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with ρ the media grain density. 

 

The median value of these triplicate results is suggested as a fair representation of the (APS-

ACS) fraction of specific deposit on the filter media. 

 

Further characterisation of the specific deposit 

In order to gain greater insight into the composition of the specific deposits stripped from the 

media, a characterisation matrix was introduced for the resultant suspensions (see Table 2 

below). 

 
Table 2: Specific deposit composition matrix 
  

 Soluble Non-soluble Total 

 V
ol

at
ile

 SV 
decomposition or volatilisation of 

some mineral salts 
(A – B – C + D) 

NSV 
bacterial and algal biomass, 

organic detritus 
(B – D) 

V 
(A – C) 

N
on

-v
ol

at
ile

  

SNV 
the carry-over of chemical 

precipitates 
(C – D) 

NSNV 
inorganic particles present in 

the raw water 
D 

NV 
C 

   
T

ot
al

  
S 

(A – B) 
 

NS 
B 

TSS 
A 

 
 
Acid soluble and non-soluble fractions 

10ml of a 0.185M (6.4%) HCl solution is mixed with 100ml of suspension and the total non-

soluble solids (NS) determined using Standard Method 209C (AWWA, 1992): 
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with ρ the media grain density and ε the filter bed porosity. 

 

Volatile and non-volatile fractions 

Using Standard Method 209D (AWWA, 1992) and the filtrates obtained for TSS and NS, the 

total non-volatile solids (NV) and the total non-soluble non-volatile solids (NSNV) of the sample 

is determined: 

 

[ ] ( )
[ ]

3
3

/ . / . 1
/
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NV mg l kg m
NV kg m

DMM g

ρ ε⎡ ⎤ −⎣ ⎦⎡ ⎤ =⎣ ⎦  

[ ] ( )
[ ]

3
3
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NSNV mg l kg m
NSNV kg m

DMM g

ρ ε⎡ ⎤ −⎣ ⎦⎡ ⎤ =⎣ ⎦  

with ρ the media grain density and ε the filter bed porosity. 
 
 
Results 
 
Between the period of May 2002 and January 2005, eight South African treatment plants were 

visited on several different occasions, resulting in a total of 31 plant visits and 44 sets of data. 

 
Washable specific deposit 
 
The results obtained from the washwater at the plant [BBW – ABW] showed that a normal and 

reasonably effective backwash at a water treatment plant removed a median specific deposit of 

0.89 kg/m3 (varying between 0.12 kg/m3 and 4.34 kg/m3). The variation observed was dependent 

on the cleanliness of the filters and the operational practices at each treatment plant. 

 

However, washing the media in a laboratory column showed that the media was not perfectly 

clean after the plant backwash but that a further median specific deposit of 1.34 kg/m3 (varying 

between 0.47 kg/m3 and 4.73 kg/m3) could still be washed from the media under these 

conditions. Figure 1 shows the differences between the specific deposit fractions removed by the 

plant and the laboratory conditions for each plant. 
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Figure 1:  Washable specific deposit per plant visit 
 
 
Physical and chemical stripping of the media 

When the media was subjected to a standardised cylinder inversion procedure [ACW – APS], 

even more specific deposit could be dislodged from the media.  A median specific deposit of 

2.41 kg/m3 (varying between 0.72 kg/m3 and 7.41 kg/m3) was obtained by this additional 

agitation step. 

 

Again, the media was shown to not be at it’s cleanest by the results of the [APS – ACS] fraction.  

Upon immersion in a strong acid and median specific deposit of 35.2 kg/m3 (showing an extreme 

variation between 2.04 kg/m3 and 241.8 kg/m3) was obtained. 

 

Figure 2 shows the differences between the specific deposit fractions removed by the cylinder 

inversion procedure and the acid solubility procedure. 
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Figure 2:  Strippable specific deposit per plant visit 
 
The first three fractions of the conceptual framework represent the ‘soft’ deposits, whilst the 

fourth represents the ‘hard’ deposits.  As such, figure 3 below shows the three ‘soft’ deposit 

fractions together 
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Figure 3:  ‘Soft’ deposits removed per plant 
 
The soft deposits that remained after the plant backwash had a median value of 3.8 kg/m3, 

indicating that the specific deposit that remains on the media after plant backwashing is almost 

as much as that which is washed out.  Whilst this media is close to the above guideline of 

4 kg/m3 for clean filters, it was observed that almost half the plants exceeded this guideline on 

some occasions. 

 

The specific deposit during summer visits (typical water temperature: 20°C – 25°C) was almost 

twice that of the specific deposit during winter visits (typical water temperature: 5°C – 10°C).  In 

most cases, these differences were attributable to the [ACW-APS] fraction, indicating that the 

key to cleaner filter media lies in this fraction, which cannot be removed by normal backwashing 

procedures, regardless of how effective they are. 
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Acid solubility and volatility characterisation 

 
Figure 4:  Percentage composition of [ABW – APS] fraction at six treatment plants, according 
to volatility and acid solubility. 
 
There are large differences in the composition of the specific deposit.  However, the SV (acid-

soluble, volatile) fraction is consistently small in relation to the other fractions and, together with 

the NSV fraction, forms the V fraction, indicative of organic material. 

 

This organic fraction is quite high at the RG treatment plant.  This plant treats eutrophic water 

and the samples were taken from GAC filters (with DAF and sand filtration as a prior treatment 

process).  As such, these beds are prone to biofilm formation, which effects headloss and media 

expansion significantly. 

 

The high, inorganic SNV fraction at the BK treatment plant indicates that in-situ treatment with 

acid may contribute to the rehabilitation of the media.  A lime-induced high-pH strategy is used 

at this treatment plant and it would appear that some lime deposits are carried over to the filters 

and not completely washed out during backwash. 
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Conclusions 

 

Expressing specific deposit in terms of mass of solids per bulk volume of media is useful to 

gauge how each plant compares with another.  

 

The results show that the amount of specific deposit removed by the treatment plants was 

relatively small when compared with the overall specific deposit.  This finding supports 

qualitative observations at numerous other treatment plants which suggest that, after a few years 

of operation, filter media is unacceptably dirty. 

 

The “hard” deposits (those chemical precipitates which can only be removed by a strong acid) 

are to be considered as part of the filter media and the focus should be on the nature of the 

remaining part of the specific deposit (composed of three fractions, namely biological, inorganic 

but acid-soluble, and inert inorganic material, which is acid-insoluble) and the means of its 

removal. 

 

The difficulty in specific deposit removal appears to lie in the biological component (a higher 

biological fraction of specific deposit results in more specific deposit remaining in the bed after a 

plant backwash).   

 

When viewing specific deposit as a whole, it appears to be a complex substance that varies 

widely between treatment plants.  As such, a single in-situ rehabilitation strategy could not be 

applied for all filter media problems.  Determining the nature of the specific deposit with one or 

more of the methods described here, would yield a better understanding of the problem and the 

most appropriate rehabilitation strategy. 
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