7 research outputs found

    Linking larval transport and fisheries demographic models to study the influence of environmental variability and larval behavior on juvenile recruitment to oyster populations

    Get PDF
    Abstract Annual variations in freshwater flow and wind may influence the dispersal of oyster larvae (by affecting circulation patterns) and the survival of adults (by influencing salinity-dependent disease mortality) in Chesapeake Bay, a region whose oyster fishery has greatly declined. These observations suggest that environmental variability has important implications for rehabilitation efforts that involve enhancing native oyster broodstock. We tested this hypothesis for the eastern oyster Crassostrea virginica by linking larval transport and fisheries demographic models. Physical conditions in both models were based on five years with differing wind and freshwater flow patterns (1995)(1996)(1997)(1998)(1999). The larval transport model predicted spatial settlement patterns by using a particle tracking model parameterized with larval behaviors discerned in preliminary analysis of ongoing laboratory studies. The demographic model incorporated estimates of stockrecruitment relationships, growth, natural mortality, disease mortality, fishing mortality, and the effect of extreme events such as freshets. A validation analysis of the linked models compared predictions of juvenile oyster settlement success with field observations from 1995 to1999. Larval transport model results indicated that settlement success of C. virginica larvae was influenced by freshwater flow conditions, with larval settlement higher in low freshwater flow years. The validation analysis indicated that including spawning stock abundance and mortality estimates in the linked larvaltransport-demographic model may have improved predictions of juvenile recruitment. Our linked model could be used to assess risks associated with introducing a new species and guide oyster management activities such as locating brood stock sanctuaries and managing harvest in response to climate variability

    The value of applying commercial fishers' experience to designed surveys for identifying characteristics of essential fish habitat for adult summer flounder

    Get PDF
    Identifying the habitat requirements of marine fish is necessary to conserve and manage their populations, but these requirements are poorly understood for many species. One method of screening for important habitat characteristics is to identify differences in habitat features between areas of high and low fish abundance. We tested the association between abundance of adult summer flounder Paralichthys dentatus and benthic habitat features at two study areas in the Middle Atlantic Bight in summer 2004. The study included trawl and remote-sensing surveys that were designed and conducted with the assistance of commercial fishers. Within each area, a local commercial fisher designated specific locations a priori as productive or unproductive for fishing. Summer flounder abundance, as measured by mean catch per area swept, was significantly greater at sites designated as productive than at sites designated as unproductive (6.5 times greater in Maryland and 4.7 times greater in Rhode Island). These results indicate that summer flounder were attracted consistently to localized habitats that must have had different characteristics than other nearby locations. Habitat variables associated with the substrate (e.g., particle size, bottom shape, and presence of sessile organisms) were measured along trawl paths using underwater video imagery. The measured variables did not explain abundance well, suggesting that microscale characteristics of the substrate did not affect summer flounder distribution. Summer flounder were most abundant at depths of 10-20 m; however, both high and low catch rates occurred in this depth range, indicating that other factors also were important. These results suggest that additional localized variables merit further investigation to determine their importance to summer flounder. This study demonstrates the importance of combining fishers' knowledge and experience with planned surveys to identify essential habitat features for fish
    corecore